linear regression with SGD and Scikit-Learn
from sklearn.linear_model import SGDRegressor sgdreg = SGDRegressor(maxiter=1000, tol=1e-3, penalty=None, eta0=0.1) sgd_reg.fit(X, y.ravel()) sgdreg.intercept, sgdreg.coef ...
Read post
learning schedule
Variación del hyperparámetro learning rate para optimizar la búsqueda del mínimo global de la función de coste. Primero definimos una función de variación, por ejemplo: def learning_schedule(t): return t0 / (t + t1) Posteriormente llamamos a esa función en cada una de las iteraciones antes de actualizar los parámetros de la red neuronal: eta = learning_schedule(epoch * m + i) ...
Read post
manifold
A manifold is a connected region. Mathematically, it is a set of points, associated with a neighborhood around each point. From any given point, the manifold locally appears to be a Euclidean space. In everyday life, we experience the surface of the world as a 2-D plane, but it is in fact a spherical manifold in 3-D space. The definition of a neighborhood surrounding each point implies the existence of transformations that can be applied to move on the manifold from one position to a neighbor...
Read post