Linking Inflammation, Aberrant Glutamate-Dopamine Interaction, and Post-synaptic Changes: Translational Relevance for Schizophrenia and Antipsychotic Treatment: a Systematic Review
September 19, 2022•10,956 words
References
Forsyth JK, Lewis DA (2017) Mapping the consequences of impaired synaptic plasticity in schizophrenia through development: an integrative model for diverse clinical features. Trends Cogn Sci 21(10):760–778. https://doi.org/10.1016/j.tics.2017.06.006
Howes OD, McCutcheon R (2017) Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptualization. Transl Psychiatry 7(2):e1024. https://doi.org/10.1038/tp.2016.278
Turano A, McAuley EM, Muench MC, Schwarz JM (2021) Examining the impact of neuroimmune dysregulation on social behavior of male and female juvenile rats. Behav Brain Res 415:113449. https://doi.org/10.1016/j.bbr.2021.113449
Müller N (2018) Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr Bull 44(5):973–982. https://doi.org/10.1093/schbul/sby024
Parellada E, Gassó P (2021) Glutamate and microglia activation as a driver of dendritic apoptosis: a core pathophysiological mechanism to understand schizophrenia. Transl Psychiatry 11(1):271. https://doi.org/10.1038/s41398-021-01385-9
Anderson G, Berk M, Dodd S, Bechter K, Altamura AC, Dell’osso B, Kanba S, Monji A, Fatemi SH, Buckley P, Debnath M, Das UN, Meyer U, Müller N, Kanchanatawan B, Maes M (2013) Immuno-inflammatory, oxidative and nitrosative stress, and neuroprogressive pathways in the etiology, course and treatment of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 42:1–4. https://doi.org/10.1016/j.pnpbp.2012.10.008
Müller N, Weidinger E, Leitner B, Schwarz MJ (2015) The role of inflammation in schizophrenia. Front Neurosci 9:372. https://doi.org/10.3389/fnins.2015.00372
Coelewij L, Curtis D (2018) Mini-review: update on the genetics of schizophrenia. Ann Hum Genet 82(5):239–243. https://doi.org/10.1111/ahg.12259
Xu M, He L (2010) Convergent evidence shows a positive association of interleukin-1 gene complex locus with susceptibility to schizophrenia in the Caucasian population. Schizophr Res 120(1–3):131–142. https://doi.org/10.1016/j.schres.2010.02.1031
Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, Sklar P (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460(7256):748–752. https://doi.org/10.1038/nature08185
Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietiläinen OP, Mors O, Mortensen PB, Sigurdsson E, Gustafsson O, Nyegaard M, Tuulio-Henriksson A, Ingason A, Hansen T, Suvisaari J, Lonnqvist J, Paunio T, Børglum AD, Hartmann A, Fink-Jensen A, Nordentoft M, Hougaard D, Norgaard-Pedersen B, Böttcher Y, Olesen J, Breuer R, Möller HJ, Giegling I, Rasmussen HB, Timm S, Mattheisen M, Bitter I, Réthelyi JM, Magnusdottir BB, Sigmundsson T, Olason P, Masson G, Gulcher JR, Haraldsson M, Fossdal R, Thorgeirsson TE, Thorsteinsdottir U, Ruggeri M, Tosato S, Franke B, Strengman E, Kiemeney LA, Melle I, Djurovic S, Abramova L, Kaleda V, Sanjuan J, de Frutos R, Bramon E, Vassos E, Fraser G, Ettinger U, Picchioni M, Walker N, Toulopoulou T, Need AC, Ge D, Yoon JL, Shianna KV, Freimer NB, Cantor RM, Murray R, Kong A, Golimbet V, Carracedo A, Arango C, Costas J, Jönsson EG, Terenius L, Agartz I, Petursson H, Nöthen MM, Rietschel M, Matthews PM, Muglia P, Peltonen L, St Clair D, Goldstein DB, Stefansson K, Collier DA (2009) Common variants conferring risk of schizophrenia. Nature 460(7256):744–747. https://doi.org/10.1038/nature08186
Stephan KE, Baldeweg T, Friston KJ (2006) Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiat 59(10):929–939. https://doi.org/10.1016/j.biopsych.2005.10.005
Aguilar-Valles A, Rodrigue B, Matta-Camacho E (2020) Maternal immune activation and the development of dopaminergic neurotransmission of the offspring: relevance for schizophrenia and other psychoses. Front Psych 11:852. https://doi.org/10.3389/fpsyt.2020.00852
Howes O, Cummings C, Heurich M (2021) Translation from genes to mechanism in schizophrenia: are immune-synaptic interactions the missing link? Biol Psychiat 90(9):593–595. https://doi.org/10.1016/j.biopsych.2021.08.014
Gleich T, Deserno L, Lorenz RC, Boehme R, Pankow A, Buchert R, Kühn S, Heinz A, Schlagenhauf F, Gallinat J (2015) Prefrontal and striatal glutamate differently relate to striatal dopamine: potential regulatory mechanisms of striatal presynaptic dopamine function? J neuroscience official J Soc Neuroscience 35(26):9615–9621. https://doi.org/10.1523/jneurosci.0329-15.2015
de Bartolomeis A, Iasevoli F, Tomasetti C, Buonaguro EF (2015) MicroRNAs in schizophrenia: implications for synaptic plasticity and dopamine-glutamate interaction at the postsynaptic density New Avenues for Antipsychotic Treatment Under a Theranostic Perspective. Mol neurobiol 52(3):1771–1790. https://doi.org/10.1007/s12035-014-8962-8
de Bartolomeis A, Manchia M, Marmo F, Vellucci L, Iasevoli F, Barone A (2020) Glycine signaling in the framework of dopamine-glutamate interaction and postsynaptic density Implications for Treatment-Resistant Schizophrenia. Frontiers in psychiatry 11:369. https://doi.org/10.3389/fpsyt.2020.00369
Iasevoli F, Tomasetti C, Buonaguro EF, de Bartolomeis A (2014) The glutamatergic aspects of schizophrenia molecular pathophysiology: role of the postsynaptic density, and implications for treatment. Curr Neuropharmacol 12(3):219–238. https://doi.org/10.2174/1570159x12666140324183406
Misiak B, Bartoli F, Carrà G, Stańczykiewicz B, Gładka A, Frydecka D, Samochowiec J, Jarosz K, Hadryś T, Miller BJ (2021) Immune-inflammatory markers and psychosis risk: a systematic review and meta-analysis. Psychoneuroendocrinology 127:105200. https://doi.org/10.1016/j.psyneuen.2021.105200
Müller N (2014) Immunology of schizophrenia. NeuroImmunoModulation 21(2–3):109–116. https://doi.org/10.1159/000356538
Jones AL, Mowry BJ, Pender MP, Greer JM (2005) Immune dysregulation and self-reactivity in schizophrenia: do some cases of schizophrenia have an autoimmune basis? Immunol Cell Biol 83(1):9–17. https://doi.org/10.1111/j.1440-1711.2005.01305.x
Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB (2015) Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. The lancet Psychiatry 2(3):258–270. https://doi.org/10.1016/s2215-0366(14)00122-9
Misiak B, Stańczykiewicz B, Kotowicz K, Rybakowski JK, Samochowiec J, Frydecka D (2018) Cytokines and C-reactive protein alterations with respect to cognitive impairment in schizophrenia and bipolar disorder: a systematic review. Schizophr Res 192:16–29. https://doi.org/10.1016/j.schres.2017.04.015
Lin A, Kenis G, Bignotti S, Tura GJ, De Jong R, Bosmans E, Pioli R, Altamura C, Scharpé S, Maes M (1998) The inflammatory response system in treatment-resistant schizophrenia: increased serum interleukin-6. Schizophr Res 32(1):9–15. https://doi.org/10.1016/s0920-9964(98)00034-6
Goldsmith DR, Haroon E, Miller AH, Strauss GP, Buckley PF, Miller BJ (2018) TNF-α and IL-6 are associated with the deficit syndrome and negative symptoms in patients with chronic schizophrenia. Schizophr Res 199:281–284. https://doi.org/10.1016/j.schres.2018.02.048
Heath RG, Krupp IM, Byers LW, Lijekvist JI (1967) Schizophrenia as an immunologic disorder 3 Effects of antimonkey and antihuman brain antibody on brain function. Arch gen psychiatry 16(1):24–33. https://doi.org/10.1001/archpsyc.1967.01730190026003
Benros ME, Mortensen PB (2020) Role of infection, autoimmunity, atopic disorders, and the immune system in schizophrenia: evidence from epidemiological and genetic studies. Curr Top Behav Neurosci 44:141–159. https://doi.org/10.1007/7854_2019_93
Rodrigues-Amorim D, Rivera-Baltanás T, López M, Spuch C, Olivares JM, Agís-Balboa RC (2017) Schizophrenia: a review of potential biomarkers. J Psychiatr Res 93:37–49. https://doi.org/10.1016/j.jpsychires.2017.05.009
Zakharyan R, Boyajyan A (2014) Inflammatory cytokine network in schizophrenia. world j biol psychiatry official j World Fed Soc Biol Psychiatry 15(3):174–187. https://doi.org/10.3109/15622975.2013.830774
Fond G, Lançon C, Korchia T, Auquier P, Boyer L (2020) The role of inflammation in the treatment of schizophrenia. Front Psych 11:160. https://doi.org/10.3389/fpsyt.2020.00160
Cattane N, Richetto J, Cattaneo A (2020) Prenatal exposure to environmental insults and enhanced risk of developing schizophrenia and autism spectrum disorder: focus on biological pathways and epigenetic mechanisms. Neurosci Biobehav Rev 117:253–278. https://doi.org/10.1016/j.neubiorev.2018.07.001
Brown AS, Derkits EJ (2010) Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 167(3):261–280. https://doi.org/10.1176/appi.ajp.2009.09030361
Howes OD, Murray RM (2014) Schizophrenia: an integrated sociodevelopmental-cognitive model. Lancet (London, England) 383(9929):1677–1687. https://doi.org/10.1016/s0140-6736(13)62036-x
Canetta S, Sourander A, Surcel HM, Hinkka-Yli-Salomäki S, Leiviskä J, Kellendonk C, McKeague IW, Brown AS (2014) Elevated maternal C-reactive protein and increased risk of schizophrenia in a national birth cohort. Am J Psychiatry 171(9):960–968. https://doi.org/10.1176/appi.ajp.2014.13121579
Brown AS, Schaefer CA, Quesenberry CP Jr, Liu L, Babulas VP, Susser ES (2005) Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring. Am J Psychiatry 162(4):767–773. https://doi.org/10.1176/appi.ajp.162.4.767
Sørensen HJ, Mortensen EL, Reinisch JM, Mednick SA (2009) Association between prenatal exposure to bacterial infection and risk of schizophrenia. Schizophr Bull 35(3):631–637. https://doi.org/10.1093/schbul/sbn121
Babulas V, Factor-Litvak P, Goetz R, Schaefer CA, Brown AS (2006) Prenatal exposure to maternal genital and reproductive infections and adult schizophrenia. Am J Psychiatry 163(5):927–929. https://doi.org/10.1176/ajp.2006.163.5.927
Boksa P (2010) Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun 24(6):881–897. https://doi.org/10.1016/j.bbi.2010.03.005
Chua JS, Cowley CJ, Manavis J, Rofe AM, Coyle P (2012) Prenatal exposure to lipopolysaccharide results in neurodevelopmental damage that is ameliorated by zinc in mice. Brain Behav Immun 26(2):326–336. https://doi.org/10.1016/j.bbi.2011.10.002
Kępińska AP, Iyegbe CO, Vernon AC, Yolken R, Murray RM, Pollak TA (2020) Schizophrenia and influenza at the centenary of the 1918–1919 Spanish influenza pandemic: mechanisms of psychosis risk. Front Psych 11:72. https://doi.org/10.3389/fpsyt.2020.00072
Mattei D, Ivanov A, Ferrai C, Jordan P, Guneykaya D, Buonfiglioli A, Schaafsma W, Przanowski P, Deuther-Conrad W, Brust P, Hesse S, Patt M, Sabri O, Ross TL, Eggen BJL, Boddeke E, Kaminska B, Beule D, Pombo A, Kettenmann H, Wolf SA (2017) Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment. Transl Psychiatry 7(5):e1120. https://doi.org/10.1038/tp.2017.80
Brown AS, Hooton J, Schaefer CA, Zhang H, Petkova E, Babulas V, Perrin M, Gorman JM, Susser ES (2004) Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry 161(5):889–895. https://doi.org/10.1176/appi.ajp.161.5.889
Reale M, Costantini E, Greig NH (2021) Cytokine Imbalance in Schizophrenia From Research to Clinic Potential Implications for Treatment. Frontiers in psychiatry 12:536257. https://doi.org/10.3389/fpsyt.2021.536257
Gatta E, Saudagar V, Drnevich J, Forrest MP, Auta J, Clark LV, Sershen H, Smith RC, Grayson DR, Davis JM, Guidotti A 2021 Concordance of immune-related markers in lymphocytes and prefrontal cortex in schizophrenia. Schizophrenia bulletin open 2 1 sgab002 https://doi.org/10.1093/schizbullopen/sgab002
Upthegrove R, Khandaker GM (2020) Cytokines, oxidative stress and cellular markers of inflammation in schizophrenia. Curr Top Behav Neurosci 44:49–66. https://doi.org/10.1007/7854_2018_88
Barichello T, Simoes LR, Quevedo J, Zhang XY (2020) Microglial activation and psychotic disorders: evidence from pre-clinical and clinical studies. Curr Top Behav Neurosci 44:161–205. https://doi.org/10.1007/7854_2018_81
Pillinger T, D’Ambrosio E, McCutcheon R, Howes OD (2019) Is psychosis a multisystem disorder? A meta-review of central nervous system, immune, cardiometabolic, and endocrine alterations in first-episode psychosis and perspective on potential models. Mol Psychiatry 24(6):776–794. https://doi.org/10.1038/s41380-018-0058-9
Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B (2011) Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiat 70(7):663–671. https://doi.org/10.1016/j.biopsych.2011.04.013
Chan MK, Krebs MO, Cox D, Guest PC, Yolken RH, Rahmoune H, Rothermundt M, Steiner J, Leweke FM, van Beveren NJ, Niebuhr DW, Weber NS, Cowan DN, Suarez-Pinilla P, Crespo-Facorro B, Mam-Lam-Fook C, Bourgin J, Wenstrup RJ, Kaldate RR, Cooper JD, Bahn S (2015) Development of a blood-based molecular biomarker test for identification of schizophrenia before disease onset. Transl Psychiatry 5(7):e601. https://doi.org/10.1038/tp.2015.91
Capuzzi E, Bartoli F, Crocamo C, Clerici M, Carrà G (2017) Acute variations of cytokine levels after antipsychotic treatment in drug-naïve subjects with a first-episode psychosis: a meta-analysis. Neurosci Biobehav Rev 77:122–128. https://doi.org/10.1016/j.neubiorev.2017.03.003
Fraguas D, Díaz-Caneja CM, Rodríguez-Quiroga A, Arango C (2017) Oxidative stress and inflammation in early onset first episode psychosis: a systematic review and meta-analysis. Int J Neuropsychopharmacol 20(6):435–444. https://doi.org/10.1093/ijnp/pyx015
Gallego JA, Blanco EA, Husain-Krautter S, Madeline Fagen E, Moreno-Merino P, Del Ojo-Jiménez JA, Ahmed A, Rothstein TL, Lencz T, Malhotra AK (2018) Cytokines in cerebrospinal fluid of patients with schizophrenia spectrum disorders: new data and an updated meta-analysis. Schizophr Res 202:64–71. https://doi.org/10.1016/j.schres.2018.07.019
Williams JA, Burgess S, Suckling J, Lalousis PA, Batool F, Griffiths SL, Palmer E, Karwath A, Barsky A, Gkoutos GV, Wood S, Barnes NM, David AS, Donohoe G, Neill JC, Deakin B, Khandaker GM, Upthegrove R (2022) Inflammation and brain structure in schizophrenia and other neuropsychiatric disorders: a Mendelian randomization study. JAMA Psychiat. https://doi.org/10.1001/jamapsychiatry.2022.0407
Hartwig FP, Borges MC, Horta BL, Bowden J, Davey Smith G (2017) Inflammatory biomarkers and risk of schizophrenia: a 2-sample Mendelian randomization study. JAMA Psychiat 74(12):1226–1233. https://doi.org/10.1001/jamapsychiatry.2017.3191
Pillinger T, Osimo EF, Brugger S, Mondelli V, McCutcheon RA, Howes OD (2019) A meta-analysis of immune parameters, variability, and assessment of modal distribution in psychosis and test of the immune subgroup hypothesis. Schizophr Bull 45(5):1120–1133. https://doi.org/10.1093/schbul/sby160
Ventura J, McEwen S, Subotnik KL, Hellemann GS, Ghadiali M, Rahimdel A, Seo MJ, Irwin MR, Nuechterlein KH (2021) Changes in inflammation are related to depression and amount of aerobic exercise in first episode schizophrenia. Early Interv Psychiatry 15(1):213–216. https://doi.org/10.1111/eip.12946
Fond G, Godin O, Brunel L, Aouizerate B, Berna F, Bulzacka E, Capdevielle D, Chereau I, Dorey JM, Dubertret C, Dubreucq J, Faget C, Gabayet F, Le Strat Y, Micoulaud-Franchi JA, Misdrahi D, Rey R, Richieri R, Passerieux C, Schandrin A, Schürhoff F, Tronche AM, Urbach M, Vidalhet P, Llorca PM, Leboyer M (2016) Peripheral sub-inflammation is associated with antidepressant consumption in schizophrenia. Results from the multi-center FACE-SZ data set. J Affect Disord 191:209–215. https://doi.org/10.1016/j.jad.2015.11.017
Pedrini M, Massuda R, Fries GR, de Bittencourt Pasquali MA, Schnorr CE, Moreira JC, Teixeira AL, Lobato MI, Walz JC, Belmonte-de-Abreu PS, Kauer-Sant’Anna M, Kapczinski F, Gama CS (2012) Similarities in serum oxidative stress markers and inflammatory cytokines in patients with overt schizophrenia at early and late stages of chronicity. J Psychiatr Res 46(6):819–824. https://doi.org/10.1016/j.jpsychires.2012.03.019
Dunleavy C, Elsworthy RJ, Upthegrove R, Wood SJ, Aldred S (2022) Inflammation in first-episode psychosis: the contribution of inflammatory biomarkers to the emergence of negative symptoms, a systematic review and meta-analysis. Acta Psychiatr Scand. https://doi.org/10.1111/acps.13416
Endres D, Perlov E, Baumgartner A, Hottenrott T, Dersch R, Stich O, Tebartz van Elst L (2015) Immunological findings in psychotic syndromes: a tertiary care hospital’s CSF sample of 180 patients. Front Hum Neurosci 9:476. https://doi.org/10.3389/fnhum.2015.00476
Bechter K (2013) Updating the mild encephalitis hypothesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 42:71–91. https://doi.org/10.1016/j.pnpbp.2012.06.019
Bechter K, Reiber H, Herzog S, Fuchs D, Tumani H, Maxeiner HG (2010) Cerebrospinal fluid analysis in affective and schizophrenic spectrum disorders: identification of subgroups with immune responses and blood-CSF barrier dysfunction. J Psychiatr Res 44(5):321–330. https://doi.org/10.1016/j.jpsychires.2009.08.008
Smith SE, Li J, Garbett K, Mirnics K, Patterson PH (2007) Maternal immune activation alters fetal brain development through interleukin-6. J neuroscience off j Soc Neuroscience 27(40):10695–10702. https://doi.org/10.1523/jneurosci.2178-07.2007
O’Connell KE, Thakore J, Dev KK (2015) Increased interleukin 23 (IL23) levels in schizophrenia patients treated with depot antipsychotic medication. Cytokine 73(1):196–198. https://doi.org/10.1016/j.cyto.2014.11.003
Allimuthu P, Nandeesha H, Chinniyappan R, Bhardwaz B, Blessed Raj J (2021) Relationship of brain-derived neurotrophic factor with Interleukin-23, testosterone and disease severity in schizophrenia. Indian j clin biochem : IJCB 36(3):365–369. https://doi.org/10.1007/s12291-020-00880-y
Green MJ, Matheson SL, Shepherd A, Weickert CS, Carr VJ (2011) Brain-derived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis. Mol Psychiatry 16(9):960–972. https://doi.org/10.1038/mp.2010.88
Roomruangwong C, Noto C, Kanchanatawan B, Anderson G, Kubera M, Carvalho AF, Maes M (2020) The role of aberrations in the immune-inflammatory response system (IRS) and the compensatory immune-regulatory reflex system (CIRS) in different phenotypes of schizophrenia: the IRS-CIRS theory of schizophrenia. Mol Neurobiol 57(2):778–797. https://doi.org/10.1007/s12035-019-01737-z
Debnath M, Berk M (2014) Th17 pathway-mediated immunopathogenesis of schizophrenia: mechanisms and implications. Schizophr Bull 40(6):1412–1421. https://doi.org/10.1093/schbul/sbu049
Beadling C, Slifka MK (2006) Regulation of innate and adaptive immune responses by the related cytokines IL-12, IL-23, and IL-27. Arch Immunol Ther Exp 54(1):15–24. https://doi.org/10.1007/s00005-006-0002-6
Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23(9):1018–1027. https://doi.org/10.1038/nm.4397
Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Sci (New York, NY) 333(6048):1456–1458. https://doi.org/10.1126/science.1202529
Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691–705. https://doi.org/10.1016/j.neuron.2012.03.026
Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, Lemere CA, Selkoe DJ, Stevens B (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Sci (New York, NY) 352(6286):712–716. https://doi.org/10.1126/science.aad8373
Ishizuka K, Fujita Y, Kawabata T, Kimura H, Iwayama Y, Inada T, Okahisa Y, Egawa J, Usami M, Kushima I, Uno Y, Okada T, Ikeda M, Aleksic B, Mori D, Someya T, Yoshikawa T, Iwata N, Nakamura H, Yamashita T, Ozaki N (2017) Rare genetic variants in CX3CR1 and their contribution to the increased risk of schizophrenia and autism spectrum disorders. Transl Psychiatry 7(8):e1184. https://doi.org/10.1038/tp.2017.173
Janßen S, Gudi V, Prajeeth CK, Singh V, Stahl K, Heckers S, Skripuletz T, Pul R, Trebst C, Tsiavaliaris G, Stangel M (2014) A pivotal role of nonmuscle myosin II during microglial activation. Exp Neurol 261:666–676. https://doi.org/10.1016/j.expneurol.2014.08.010
Newell-Litwa KA, Horwitz R, Lamers ML (2015) Non-muscle myosin II in disease: mechanisms and therapeutic opportunities. Dis Model Mech 8(12):1495–1515. https://doi.org/10.1242/dmm.022103
Comer AL, Carrier M, Tremblay M, Cruz-Martín A (2020) The inflamed brain in schizophrenia: the convergence of genetic and environmental risk factors that lead to uncontrolled neuroinflammation. Front Cell Neurosci 14:274. https://doi.org/10.3389/fncel.2020.00274
Versijpt JJ, Dumont F, Van Laere KJ, Decoo D, Santens P, Audenaert K, Achten E, Slegers G, Dierckx RA, Korf J (2003) Assessment of neuroinflammation and microglial activation in Alzheimer’s disease with radiolabelled PK11195 and single photon emission computed tomography. A pilot study European neurology 50(1):39–47. https://doi.org/10.1159/000070857
Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC (2009) Neuroinflammation in schizophrenia-related psychosis: a PET study. Journal nuclear med : off publ Soc Nuclear Med 50(11):1801–1807. https://doi.org/10.2967/jnumed.109.066647
Takano A, Arakawa R, Ito H, Tateno A, Takahashi H, Matsumoto R, Okubo Y, Suhara T (2010) Peripheral benzodiazepine receptors in patients with chronic schizophrenia: a PET study with [11C]DAA1106. Int J Neuropsychopharmacol 13(7):943–950. https://doi.org/10.1017/s1461145710000313
Chang H, Xiao X, Li M (2017) The schizophrenia risk gene ZNF804A: clinical associations, biological mechanisms and neuronal functions. Mol Psychiatry 22(7):944–953. https://doi.org/10.1038/mp.2017.19
Norden DM, Fenn AM, Dugan A, Godbout JP (2014) TGFβ produced by IL-10 redirected astrocytes attenuates microglial activation. Glia 62(6):881–895. https://doi.org/10.1002/glia.22647
Norden DM, Trojanowski PJ, Walker FR, Godbout JP (2016) Insensitivity of astrocytes to interleukin 10 signaling following peripheral immune challenge results in prolonged microglial activation in the aged brain. Neurobiol Aging 44:22–41. https://doi.org/10.1016/j.neurobiolaging.2016.04.014
Healy LM, Perron G, Won SY, Michell-Robinson MA, Rezk A, Ludwin SK, Moore CS, Hall JA, Bar-Or A, Antel JP (2016) MerTK is a functional regulator of myelin phagocytosis by human myeloid cells. Journal of immunology (Baltimore, Md : 1950) 196 (8):3375–3384. https://doi.org/10.4049/jimmunol.1502562
Umeda-Yano S, Hashimoto R, Yamamori H, Okada T, Yasuda Y, Ohi K, Fukumoto M, Ito A, Takeda M (2013) The regulation of gene expression involved in TGF-β signaling by ZNF804A, a risk gene for schizophrenia. Schizophr Res 146(1–3):273–278. https://doi.org/10.1016/j.schres.2013.01.026
Liu Z, Osipovitch M, Benraiss A, Huynh NPT, Foti R, Bates J, Chandler-Militello D, Findling RL, Tesar PJ, Nedergaard M, Windrem MS, Goldman SA (2019) Dysregulated glial differentiation in schizophrenia may be relieved by suppression of SMAD4- and REST-dependent signaling. Cell Rep 27(13):3832-3843.e3836. https://doi.org/10.1016/j.celrep.2019.05.088
Corsi-Zuelli F, Deakin B (2021) Impaired regulatory T cell control of astroglial overdrive and microglial pruning in schizophrenia. Neurosci Biobehav Rev 125:637–653. https://doi.org/10.1016/j.neubiorev.2021.03.004
Kim SY, Senatorov VV Jr, Morrissey CS, Lippmann K, Vazquez O, Milikovsky DZ, Gu F, Parada I, Prince DA, Becker AJ, Heinemann U, Friedman A, Kaufer D (2017) TGFβ signaling is associated with changes in inflammatory gene expression and perineuronal net degradation around inhibitory neurons following various neurological insults. Sci Rep 7(1):7711. https://doi.org/10.1038/s41598-017-07394-3
Zöller T, Schneider A, Kleimeyer C, Masuda T, Potru PS, Pfeifer D, Blank T, Prinz M, Spittau B (2018) Silencing of TGFβ signalling in microglia results in impaired homeostasis. Nat Commun 9(1):4011. https://doi.org/10.1038/s41467-018-06224-y
Hall J, Trent S, Thomas KL, O’Donovan MC, Owen MJ (2015) Genetic risk for schizophrenia: convergence on synaptic pathways involved in plasticity. Biol Psychiat 77(1):52–58. https://doi.org/10.1016/j.biopsych.2014.07.011
Glausier JR, Lewis DA (2013) Dendritic spine pathology in schizophrenia. Neuroscience 251:90–107. https://doi.org/10.1016/j.neuroscience.2012.04.044
Cannon TD (2015) How schizophrenia develops: cognitive and brain mechanisms underlying onset of psychosis. Trends Cogn Sci 19(12):744–756. https://doi.org/10.1016/j.tics.2015.09.009
Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, Fu T, Worringer K, Brown HE, Wang J, Kaykas A, Karmacharya R, Goold CP, Sheridan SD, Perlis RH (2019) Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci 22(3):374–385. https://doi.org/10.1038/s41593-018-0334-7
Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, Grace AA (2008) Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 31(5):234–242. https://doi.org/10.1016/j.tins.2008.02.005
Lewis DA (2012) Cortical circuit dysfunction and cognitive deficits in schizophrenia–implications for preemptive interventions. Eur J Neurosci 35(12):1871–1878. https://doi.org/10.1111/j.1460-9568.2012.08156.x
Cannon TD (2016) Microglial activation and the onset of psychosis. Am J Psychiatry 173(1):3–4. https://doi.org/10.1176/appi.ajp.2015.15111377
Sheridan SD, Horng JE, Perlis RH (2022) Patient-derived in vitro models of microglial function and synaptic engulfment in schizophrenia. Biol Psychiat. https://doi.org/10.1016/j.biopsych.2022.01.004
Clausen MV, Hilbers F, Poulsen H (2017) The structure and function of the Na, K-ATPase isoforms in health and disease. Front Physiol 8:371. https://doi.org/10.3389/fphys.2017.00371
Scavone C, Munhoz CD, Kawamoto EM, Glezer I, de Sá LL, Marcourakis T, Markus RP (2005) Age-related changes in cyclic GMP and PKG-stimulated cerebellar Na. K-ATPase activity Neurobiology of aging 26(6):907–916. https://doi.org/10.1016/j.neurobiolaging.2004.08.013
Corti C, Xuereb JH, Crepaldi L, Corsi M, Michielin F, Ferraguti F (2011) Altered levels of glutamatergic receptors and Na+/K+ ATPase-α1 in the prefrontal cortex of subjects with schizophrenia. Schizophr Res 128(1–3):7–14. https://doi.org/10.1016/j.schres.2011.01.021
McEwen BS, Morrison JH (2013) The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron 79(1):16–29. https://doi.org/10.1016/j.neuron.2013.06.028
Musazzi L, Treccani G, Popoli M (2015) Functional and structural remodeling of glutamate synapses in prefrontal and frontal cortex induced by behavioral stress. Front Psych 6:60. https://doi.org/10.3389/fpsyt.2015.00060
Perez-Cruz C, Müller-Keuker JI, Heilbronner U, Fuchs E, Flügge G (2007) Morphology of pyramidal neurons in the rat prefrontal cortex: lateralized dendritic remodeling by chronic stress. Neural Plast 2007:46276. https://doi.org/10.1155/2007/46276
Munhoz C, Madrigal JL, García-Bueno B, Pradillo JM, Moro MA, Lizasoain I, Lorenzo P, Scavone C, Leza JC (2004) TNF-alpha accounts for short-term persistence of oxidative status in rat brain after two weeks of repeated stress. Eur J Neurosci 20(4):1125–1130. https://doi.org/10.1111/j.1460-9568.2004.03560.x
Altamura AC, Boin F, Maes M (1999) HPA axis and cytokines dysregulation in schizophrenia: potential implications for the antipsychotic treatment. Eur neuropsychopharmacology j Eur Coll Neuropsychopharmacology 10(1):1–4. https://doi.org/10.1016/s0924-977x(99)00017-6
Olmos G, Lladó J (2014) Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm 2014:861231. https://doi.org/10.1155/2014/861231
Chávez CE, Oyarzún JE, Avendaño BC, Mellado LA, Inostroza CA, Alvear TF, Orellana JA (2019) The opening of connexin 43 hemichannels alters hippocampal astrocyte function and neuronal survival in prenatally LPS-exposed adult offspring. Front Cell Neurosci 13:460. https://doi.org/10.3389/fncel.2019.00460
Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2(10):734–744. https://doi.org/10.1038/35094583
Meade AJ, Meloni BP, Cross J, Bakker AJ, Fear MW, Mastaglia FL, Watt PM, Knuckey NW (2010) AP-1 inhibitory peptides are neuroprotective following acute glutamate excitotoxicity in primary cortical neuronal cultures. J Neurochem 112(1):258–270. https://doi.org/10.1111/j.1471-4159.2009.06459.x
Kwon DJ, Ju SM, Youn GS, Choi SY, Park J (2013) Suppression of iNOS and COX-2 expression by flavokawain A via blockade of NF-κB and AP-1 activation in RAW 264.7 macrophages. Food chem toxicol int j published Br Ind Biol Res Assoc 58:479–486. https://doi.org/10.1016/j.fct.2013.05.031
Novaes LS, Dos Santos NB, Dragunas G, Perfetto JG, Leza JC, Scavone C, Munhoz CD (2018) Repeated restraint stress decreases Na, K-ATPase activity via oxidative and nitrosative damage in the frontal cortex of rats. Neuroscience 393:273–283. https://doi.org/10.1016/j.neuroscience.2018.09.037
Nasi G, Ahmed T, Rasini E, Fenoglio D, Marino F, Filaci G, Cosentino M (2019) Dopamine inhibits human CD8+ Treg function through D(1)-like dopaminergic receptors. J Neuroimmunol 332:233–241. https://doi.org/10.1016/j.jneuroim.2019.02.007
Pape K, Tamouza R, Leboyer M, Zipp F (2019) Immunoneuropsychiatry - novel perspectives on brain disorders. Nat Rev Neurol 15(6):317–328. https://doi.org/10.1038/s41582-019-0174-4
Levite M (2016) Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases. Acta Physiol (Oxf) 216(1):42–89. https://doi.org/10.1111/apha.12476
Vidal PM, Pacheco R (2020) Targeting the dopaminergic system in autoimmunity. J neuroimmune pharm off j Soc NeuroImmune Pharmacol 15(1):57–73. https://doi.org/10.1007/s11481-019-09834-5
Vidal PM, Pacheco R (2020) The cross-talk between the dopaminergic and the immune system involved in schizophrenia. Front Pharmacol 11:394. https://doi.org/10.3389/fphar.2020.00394
Felger JC, Mun J, Kimmel HL, Nye JA, Drake DF, Hernandez CR, Freeman AA, Rye DB, Goodman MM, Howell LL, Miller AH (2013) Chronic interferon-α decreases dopamine 2 receptor binding and striatal dopamine release in association with anhedonia-like behavior in nonhuman primates. Neuropsychopharmacology : off publ Am Coll Neuropsychopharmacology 38(11):2179–2187. https://doi.org/10.1038/npp.2013.115
Chiarugi A, Calvani M, Meli E, Traggiai E, Moroni F (2001) Synthesis and release of neurotoxic kynurenine metabolites by human monocyte-derived macrophages. J Neuroimmunol 120(1–2):190–198. https://doi.org/10.1016/s0165-5728(01)00418-0
Müller N, Myint AM, Schwarz MJ (2011) Kynurenine pathway in schizophrenia: pathophysiological and therapeutic aspects. Curr Pharm Des 17(2):130–136. https://doi.org/10.2174/138161211795049552
Kessler M, Terramani T, Lynch G, Baudry M (1989) A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52(4):1319–1328. https://doi.org/10.1111/j.1471-4159.1989.tb01881.x
Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J neuroscience j Soc Neuroscience 21(19):7463–7473. https://doi.org/10.1523/jneurosci.21-19-07463.2001
Grohmann U, Fallarino F, Puccetti P (2003) Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol 24(5):242–248. https://doi.org/10.1016/s1471-4906(03)00072-3
Kegel ME, Bhat M, Skogh E, Samuelsson M, Lundberg K, Dahl ML, Sellgren C, Schwieler L, Engberg G, Schuppe-Koistinen I, Erhardt S (2014) Imbalanced kynurenine pathway in schizophrenia. Int j tryptophan res : IJTR 7:15–22. https://doi.org/10.4137/ijtr.S16800
Gos T, Myint AM, Schiltz K, Meyer-Lotz G, Dobrowolny H, Busse S, Müller UJ, Mawrin C, Bernstein HG, Bogerts B, Steiner J (2014) Reduced microglial immunoreactivity for endogenous NMDA receptor agonist quinolinic acid in the hippocampus of schizophrenia patients. Brain Behav Immun 41:59–64. https://doi.org/10.1016/j.bbi.2014.05.012
Müller N, Ackenheil M (1995) Immunoglobulin and albumin content of cerebrospinal fluid in schizophrenic patients: relationship to negative symptomatology. Schizophr Res 14(3):223–228. https://doi.org/10.1016/0920-9964(94)00045-a
Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45(3):309–379
Miüller N, Schwarz MJ (2007) The immunological basis of glutamatergic disturbance in schizophrenia: towards an integrated view. J Neural Transm Suppl 72:269–280. https://doi.org/10.1007/978-3-211-73574-9_33
Muller N, Schwarz M (2006) Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotox Res 10(2):131–148. https://doi.org/10.1007/bf03033242
Schwieler L, Engberg G, Erhardt S (2004) Clozapine modulates midbrain dopamine neuron firing via interaction with the NMDA receptor complex. Synapse (New York, NY) 52(2):114–122. https://doi.org/10.1002/syn.20008
Weickert CS, Hyde TM, Lipska BK, Herman MM, Weinberger DR, Kleinman JE (2003) Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol Psychiatry 8(6):592–610. https://doi.org/10.1038/sj.mp.4001308
Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57(1):65–73. https://doi.org/10.1001/archpsyc.57.1.65
Meisenzahl EM, Rujescu D, Kirner A, Giegling I, Kathmann N, Leinsinger G, Maag K, Hegerl U, Hahn K, Möller HJ (2001) Association of an interleukin-1beta genetic polymorphism with altered brain structure in patients with schizophrenia. Am J Psychiatry 158(8):1316–1319. https://doi.org/10.1176/appi.ajp.158.8.1316
Ellman LM, Deicken RF, Vinogradov S, Kremen WS, Poole JH, Kern DM, Tsai WY, Schaefer CA, Brown AS (2010) Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8. Schizophr Res 121(1–3):46–54. https://doi.org/10.1016/j.schres.2010.05.014
Potter ED, Ling ZD, Carvey PM (1999) Cytokine-induced conversion of mesencephalic-derived progenitor cells into dopamine neurons. Cell Tissue Res 296(2):235–246. https://doi.org/10.1007/s004410051285
Ling ZD, Potter ED, Lipton JW, Carvey PM (1998) Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. Exp Neurol 149(2):411–423. https://doi.org/10.1006/exnr.1998.6715
Kabiersch A, Furukawa H, del Rey A, Besedovsky HO (1998) Administration of interleukin-1 at birth affects dopaminergic neurons in adult mice. Ann N Y Acad Sci 840:123–127. https://doi.org/10.1111/j.1749-6632.1998.tb09556.x
Jarskog LF, Xiao H, Wilkie MB, Lauder JM, Gilmore JH (1997) Cytokine regulation of embryonic rat dopamine and serotonin neuronal survival in vitro. Int j dev neuroscience off j Int Soc Dev Neuroscience 15(6):711–716. https://doi.org/10.1016/s0736-5748(97)00029-4
Müller N (2017) Immunological aspects of the treatment of depression and schizophrenia. Dialogues in clinical neuroscience 19(1):55–63. https://doi.org/10.31887/DCNS.2017.19.1/nmueller
Felger JC, Cole SW, Pace TW, Hu F, Woolwine BJ, Doho GH, Raison CL, Miller AH (2012) Molecular signatures of peripheral blood mononuclear cells during chronic interferon-α treatment: relationship with depression and fatigue. Psychol Med 42(8):1591–1603. https://doi.org/10.1017/s0033291711002868
Li W, Knowlton D, Woodward WR, Habecker BA (2003) Regulation of noradrenergic function by inflammatory cytokines and depolarization. J Neurochem 86(3):774–783. https://doi.org/10.1046/j.1471-4159.2003.01890.x
Shi W, Meininger CJ, Haynes TE, Hatakeyama K, Wu G (2004) Regulation of tetrahydrobiopterin synthesis and bioavailability in endothelial cells. Cell Biochem Biophys 41(3):415–434. https://doi.org/10.1385/cbb:41:3:415
Ji E, Boerrigter D, Cai HQ, Lloyd D, Bruggemann J, O’Donnell M, Galletly C, Lloyd A, Liu D, Lenroot R, Weickert TW, Shannon Weickert C (2022) Peripheral complement is increased in schizophrenia and inversely related to cortical thickness. Brain Behav Immun 101:423–434. https://doi.org/10.1016/j.bbi.2021.11.014
Baines KJ, Rampersaud AM, Hillier DM, Jeyarajah MJ, Grafham GK, Eastabrook G, Lacefield JC, Renaud SJ 2020 Antiviral inflammation during early pregnancy reduces placental and fetal growth trajectories. Journal of immunology (Baltimore, Md : 1950) 204 (3):694–706. https://doi.org/10.4049/jimmunol.1900888
Aguilar-Valles A, Poole S, Mistry Y, Williams S, Luheshi GN (2007) Attenuated fever in rats during late pregnancy is linked to suppressed interleukin-6 production after localized inflammation with turpentine. J Physiol 583(Pt 1):391–403. https://doi.org/10.1113/jphysiol.2007.132829
Aguilar-Valles A, Luheshi GN (2011) Alterations in cognitive function and behavioral response to amphetamine induced by prenatal inflammation are dependent on the stage of pregnancy. Psychoneuroendocrinology 36(5):634–648. https://doi.org/10.1016/j.psyneuen.2010.09.006
Aguilar-Valles A, Jung S, Poole S, Flores C, Luheshi GN (2012) Leptin and interleukin-6 alter the function of mesolimbic dopamine neurons in a rodent model of prenatal inflammation. Psychoneuroendocrinology 37(7):956–969. https://doi.org/10.1016/j.psyneuen.2011.11.003
Careaga M, Murai T, Bauman MD (2017) Maternal immune activation and autism spectrum disorder: from rodents to nonhuman and human primates. Biol Psychiat 81(5):391–401. https://doi.org/10.1016/j.biopsych.2016.10.020
Patterson PH (2009) Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav Brain Res 204(2):313–321. https://doi.org/10.1016/j.bbr.2008.12.016
Malkova NV, Yu CZ, Hsiao EY, Moore MJ, Patterson PH (2012) Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav Immun 26(4):607–616. https://doi.org/10.1016/j.bbi.2012.01.011
Pond HL, Heller AT, Gural BM, McKissick OP, Wilkinson MK, Manzini MC (2021) Digging behavior discrimination test to probe burrowing and exploratory digging in male and female mice. J Neurosci Res 99(9):2046–2058. https://doi.org/10.1002/jnr.24857
Fernández de Cossío L, Guzmán A, van der Veldt S, Luheshi GN (2017) Prenatal infection leads to ASD-like behavior and altered synaptic pruning in the mouse offspring. Brain Behav Immun 63:88–98. https://doi.org/10.1016/j.bbi.2016.09.028
Albelda N, Joel D (2012) Animal models of obsessive-compulsive disorder: exploring pharmacology and neural substrates. Neurosci Biobehav Rev 36(1):47–63. https://doi.org/10.1016/j.neubiorev.2011.04.006
Kleinmans M, Bilkey DK (2018) Reversal learning impairments in the maternal immune activation rat model of schizophrenia. Behav Neurosci 132(6):520–525. https://doi.org/10.1037/bne0000275
Nakamura JP, Schroeder A, Gibbons A, Sundram S, Hill RA (2022) Timing of maternal immune activation and sex influence schizophrenia-relevant cognitive constructs and neuregulin and GABAergic pathways. Brain Behav Immun 100:70–82. https://doi.org/10.1016/j.bbi.2021.11.006
Shi L, Fatemi SH, Sidwell RW, Patterson PH (2003) Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. The Journal of neuroscience : the official journal of the Society for Neuroscience 23(1):297–302. https://doi.org/10.1523/jneurosci.23-01-00297.2003
Perry W, Braff DL (1994) Information-processing deficits and thought disorder in schizophrenia. Am J Psychiatry 151(3):363–367. https://doi.org/10.1176/ajp.151.3.363
Mena A, Ruiz-Salas JC, Puentes A, Dorado I, Ruiz-Veguilla M, De la Casa LG (2016) Reduced prepulse inhibition as a biomarker of schizophrenia. Front Behav Neurosci 10:202. https://doi.org/10.3389/fnbeh.2016.00202
Wolff AR, Bilkey DK (2010) The maternal immune activation (MIA) model of schizophrenia produces pre-pulse inhibition (PPI) deficits in both juvenile and adult rats but these effects are not associated with maternal weight loss. Behav Brain Res 213(2):323–327. https://doi.org/10.1016/j.bbr.2010.05.008
Le Pen G, Moreau JL (2002) Disruption of prepulse inhibition of startle reflex in a neurodevelopmental model of schizophrenia: reversal by clozapine, olanzapine and risperidone but not by haloperidol. Neuropsychopharmacology : off publ Am Coll Neuropsychopharmacology 27(1):1–11. https://doi.org/10.1016/s0893-133x(01)00383-9
Kitagawa K, Nagai T, Yamada K (2019) Pharmacological and proteomic analyses of neonatal polyI:C-treated adult mice. Neurosci Res 147:39–47. https://doi.org/10.1016/j.neures.2018.10.007
Lubow RE (1973) Latent inhibition. Psychol Bull 79(6):398–407. https://doi.org/10.1037/h0034425
Zuckerman L, Rehavi M, Nachman R, Weiner I (2003) Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology : off publ Am College Neuropsychopharmacology 28(10):1778–1789. https://doi.org/10.1038/sj.npp.1300248
Vaitl D, Lipp O, Bauer U, Schüler G, Stark R, Zimmermann M, Kirsch P (2002) Latent inhibition and schizophrenia: Pavlovian conditioning of autonomic responses. Schizophr Res 55(1–2):147–158. https://doi.org/10.1016/s0920-9964(01)00250-x
Ozaki K, Kato D, Ikegami A, Hashimoto A, Sugio S, Guo Z, Shibushita M, Tatematsu T, Haruwaka K, Moorhouse AJ, Yamada H, Wake H (2020) Maternal immune activation induces sustained changes in fetal microglia motility. Sci Rep 10(1):21378. https://doi.org/10.1038/s41598-020-78294-2
Hui CW, Vecchiarelli HA, Gervais É, Luo X, Michaud F, Scheefhals L, Bisht K, Sharma K, Topolnik L, Tremblay M (2020) Sex differences of microglia and synapses in the hippocampal dentate gyrus of adult mouse offspring exposed to maternal immune activation. Front Cell Neurosci 14:558181. https://doi.org/10.3389/fncel.2020.558181
Zawadzka A, Cieślik M, Adamczyk A (2021) The role of maternal immune activation in the pathogenesis of autism: a review of the evidence, proposed mechanisms and implications for treatment. International journal of molecular sciences 22:21. https://doi.org/10.3390/ijms222111516
Uranova NA, Vikhreva OV, Rakhmanova VI (2021) Abnormal microglial reactivity in gray matter of the prefrontal cortex in schizophrenia. Asian J Psychiatr 63:102752. https://doi.org/10.1016/j.ajp.2021.102752
Li R, Ma X, Wang G, Yang J, Wang C (2016) Why sex differences in schizophrenia? J transl neuroscience 1(1):37–42
Barley K, Dracheva S, Byne W (2009) Subcortical oligodendrocyte- and astrocyte-associated gene expression in subjects with schizophrenia, major depression and bipolar disorder. Schizophr Res 112(1–3):54–64. https://doi.org/10.1016/j.schres.2009.04.019
Ji Z, Tan M, Gao Y, Zhang J, Gong X, Guo G, Lin H (2014) CRMP-5 interacts with tubulin to promote growth cone development in neurons. Int J Clin Exp Med 7(1):67–75
Lipska BK, Weinberger DR (2000) To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology : off publ Am Coll Neuropsychopharmacology 23(3):223–239. https://doi.org/10.1016/s0893-133x(00)00137-8
Winter C, Djodari-Irani A, Sohr R, Morgenstern R, Feldon J, Juckel G, Meyer U (2009) Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: implications for brain disorders of neurodevelopmental origin such as schizophrenia. Int J Neuropsychopharmacol 12(4):513–524. https://doi.org/10.1017/s1461145708009206
Meyer U, Engler A, Weber L, Schedlowski M, Feldon J (2008) Preliminary evidence for a modulation of fetal dopaminergic development by maternal immune activation during pregnancy. Neuroscience 154(2):701–709. https://doi.org/10.1016/j.neuroscience.2008.04.031
Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M (2006) Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiat 59(6):546–554. https://doi.org/10.1016/j.biopsych.2005.07.031
Mundorf A, Kubitza N, Hünten K, Matsui H, Juckel G, Ocklenburg S, Freund N (2021) Maternal immune activation leads to atypical turning asymmetry and reduced DRD2 mRNA expression in a rat model of schizophrenia. Behav Brain Res 414:113504. https://doi.org/10.1016/j.bbr.2021.113504
Vuillermot S, Weber L, Feldon J, Meyer U (2010) A longitudinal examination of the neurodevelopmental impact of prenatal immune activation in mice reveals primary defects in dopaminergic development relevant to schizophrenia. J neuroscience off j Soc Neuroscience 30(4):1270–1287. https://doi.org/10.1523/jneurosci.5408-09.2010
Weber-Stadlbauer U, Richetto J, Zwamborn RAJ, Slieker RC, Meyer U (2021) Transgenerational modification of dopaminergic dysfunctions induced by maternal immune activation. Neuropsychopharmacology : off publ Am Coll Neuropsychopharmacology 46(2):404–412. https://doi.org/10.1038/s41386-020-00855-w
Ibi D, Nagai T, Kitahara Y, Mizoguchi H, Koike H, Shiraki A, Takuma K, Kamei H, Noda Y, Nitta A, Nabeshima T, Yoneda Y, Yamada K (2009) Neonatal polyI: C treatment in mice results in schizophrenia-like behavioral and neurochemical abnormalities in adulthood. Neurosci Res 64(3):297–305. https://doi.org/10.1016/j.neures.2009.03.015
Hao K, Su X, Luo B, Cai Y, Chen T, Yang Y, Shao M, Song M, Zhang L, Zhong Z, Li W, Lv L (2019) Prenatal immune activation induces age-related alterations in rat offspring: effects upon NMDA receptors and behaviors. Behav Brain Res 370:111946. https://doi.org/10.1016/j.bbr.2019.111946
Cieślik M, Gąssowska-Dobrowolska M, Jęśko H, Czapski GA, Wilkaniec A, Zawadzka A, Dominiak A, Polowy R, Filipkowski RK, Boguszewski PM, Gewartowska M, Frontczak-Baniewicz M, Sun GY, Beversdorf DQ, Adamczyk A (2020) Maternal Immune Activation Induces Neuroinflammation and Cortical Synaptic Deficits in the Adolescent Rat Offspring. Int j mol sci 21:11. https://doi.org/10.3390/ijms21114097
Canetta S, Bolkan S, Padilla-Coreano N, Song LJ, Sahn R, Harrison NL, Gordon JA, Brown A, Kellendonk C (2016) Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol Psychiatry 21(7):956–968. https://doi.org/10.1038/mp.2015.222
Gao R, Penzes P (2015) Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med 15(2):146–167. https://doi.org/10.2174/1566524015666150303003028
McColl ER, Piquette-Miller M 2019 Poly(I:C) alters placental and fetal brain amino acid transport in a rat model of maternal immune activation. American journal of reproductive immunology (New York, NY : 1989) 81 (6):e13115 https://doi.org/10.1111/aji.13115
Eulenburg V, Retiounskaia M, Papadopoulos T, Gomeza J, Betz H (2010) Glial glycine transporter 1 function is essential for early postnatal survival but dispensable in adult mice. Glia 58(9):1066–1073. https://doi.org/10.1002/glia.20987
Knuesel I, Chicha L, Britschgi M, Schobel SA, Bodmer M, Hellings JA, Toovey S, Prinssen EP (2014) Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 10(11):643–660. https://doi.org/10.1038/nrneurol.2014.187
Giovanoli S, Weber-Stadlbauer U, Schedlowski M, Meyer U, Engler H (2016) Prenatal immune activation causes hippocampal synaptic deficits in the absence of overt microglia anomalies. Brain Behav Immun 55:25–38. https://doi.org/10.1016/j.bbi.2015.09.015
Oh-Nishi A, Obayashi S, Sugihara I, Minamimoto T, Suhara T (2010) Maternal immune activation by polyriboinosinic-polyribocytidilic acid injection produces synaptic dysfunction but not neuronal loss in the hippocampus of juvenile rat offspring. Brain Res 1363:170–179. https://doi.org/10.1016/j.brainres.2010.09.054
Purves-Tyson TD, Weber-Stadlbauer U, Richetto J, Rothmond DA, Labouesse MA, Polesel M, Robinson K, Shannon Weickert C, Meyer U (2021) Increased levels of midbrain immune-related transcripts in schizophrenia and in murine offspring after maternal immune activation. Mol Psychiatry 26(3):849–863. https://doi.org/10.1038/s41380-019-0434-0
Konrad A, Winterer G (2008) Disturbed structural connectivity in schizophrenia primary factor in pathology or epiphenomenon? Schizophr Bull 34(1):72–92. https://doi.org/10.1093/schbul/sbm034
Suzuki T, Kametani K, Guo W, Li W (2018) Protein components of post-synaptic density lattice, a backbone structure for type I excitatory synapses. J Neurochem 144(4):390–407. https://doi.org/10.1111/jnc.14254
Feinberg I (1982) Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res 17(4):319–334. https://doi.org/10.1016/0022-3956(82)90038-3
McGlashan TH, Hoffman RE (2000) Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 57(7):637–648. https://doi.org/10.1001/archpsyc.57.7.637
Moyer CE, Erickson SL, Fish KN, Thiels E, Penzes P, Sweet RA 2016 Developmental trajectories of auditory cortex synaptic structures and gap-prepulse inhibition of acoustic startle between early adolescence and young adulthood in mice. Cerebral cortex (New York, NY : 1991) 26 (5):2115–2126. https://doi.org/10.1093/cercor/bhv040
Keshavan MS, Anderson S, Pettegrew JW (1994) Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J Psychiatr Res 28(3):239–265. https://doi.org/10.1016/0022-3956(94)90009-4
Cornejo VH, Ofer N, Yuste R (2022) Voltage compartmentalization in dendritic spines in vivo. Sci (New York, NY) 375(6576):82–86. https://doi.org/10.1126/science.abg0501
Yuste R (2011) Dendritic spines and distributed circuits. Neuron 71(5):772–781. https://doi.org/10.1016/j.neuron.2011.07.024
Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Sci (New York, NY) 275(5297):209–213. https://doi.org/10.1126/science.275.5297.209
London M, Häusser M (2005) Dendritic computation. Annu Rev Neurosci 28:503–532. https://doi.org/10.1146/annurev.neuro.28.061604.135703
Purpura DP (1974) Dendritic spine “dysgenesis” and mental retardation. Sci (New York, NY) 186(4169):1126–1128. https://doi.org/10.1126/science.186.4169.1126
Coiro P, Padmashri R, Suresh A, Spartz E, Pendyala G, Chou S, Jung Y, Meays B, Roy S, Gautam N, Alnouti Y, Li M, Dunaevsky A (2015) Impaired synaptic development in a maternal immune activation mouse model of neurodevelopmental disorders. Brain Behav Immun 50:249–258. https://doi.org/10.1016/j.bbi.2015.07.022
Hillen AEJ, Burbach JPH, Hol EM (2018) Cell adhesion and matricellular support by astrocytes of the tripartite synapse. Prog Neurobiol 165–167:66–86. https://doi.org/10.1016/j.pneurobio.2018.02.002
Abazyan B, Nomura J, Kannan G, Ishizuka K, Tamashiro KL, Nucifora F, Pogorelov V, Ladenheim B, Yang C, Krasnova IN, Cadet JL, Pardo C, Mori S, Kamiya A, Vogel MW, Sawa A, Ross CA, Pletnikov MV (2010) Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biol Psychiat 68(12):1172–1181. https://doi.org/10.1016/j.biopsych.2010.09.022
Bitanihirwe BK, Peleg-Raibstein D, Mouttet F, Feldon J, Meyer U (2010) Late prenatal immune activation in mice leads to behavioral and neurochemical abnormalities relevant to the negative symptoms of schizophrenia. Neuropsychopharmacology : off publ Am Coll Neuropsychopharmacology 35(12):2462–2478. https://doi.org/10.1038/npp.2010.129
Tong L, Prieto GA, Kramár EA, Smith ED, Cribbs DH, Lynch G, Cotman CW (2012) Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-activated protein kinase. J neuroscience off j Soc Neuroscience 32(49):17714–17724. https://doi.org/10.1523/jneurosci.1253-12.2012
de Bartolomeis A, Barone A, Buonaguro EF, Tomasetti C, Vellucci L, Iasevoli F 2022 The Homer1 family of proteins at the crossroad of dopamine-glutamate signaling: an emerging molecular “Lego” in the pathophysiology of psychiatric disorders. A systematic review and translational insight. Neuroscience and biobehavioral reviews 136:104596.:https://doi.org/10.1016/j.neubiorev.2022.104596
Buchtová H, Fajnerová I, Stuchlík A, Kubík Š (2017) Acute systemic MK-801 induced functional uncoupling between hippocampal areas CA3 and CA1 with distant effect in the retrosplenial cortex. Hippocampus 27(2):134–144. https://doi.org/10.1002/hipo.22678
Cui Z, Zhou L, Liu C, Zhu G, Wu X, Yan Y, Xia X, Ben Z, Song Y, Zhou Y, Zhang H, Zhang D (2015) The role of Homer1b/c in neuronal apoptosis following LPS-induced neuroinflammation. Neurochem Res 40(1):204–215. https://doi.org/10.1007/s11064-014-1460-6
Kolmogorova D, Ismail N (2021) Pubertal LPS treatment selectively alters PSD-95 expression in male CD-1 mice. Brain Res Bull 175:186–195. https://doi.org/10.1016/j.brainresbull.2021.07.025
Kim EJ, Pellman B, Kim JJ (2015) Stress effects on the hippocampus: a critical review. Learning & memory (Cold Spring Harbor, NY) 22(9):411–416. https://doi.org/10.1101/lm.037291.114
McEwen BS, Nasca C, Gray JD (2016) Stress effects on neuronal structure: hippocampus amygdala and prefrontal cortex neuropsychopharmacology official publication of the American College of. Neuropsychopharmacology 41(1):3–23. https://doi.org/10.1038/npp.2015.171
Schwabe L (2017) Memory under stress: from single systems to network changes. Eur J Neurosci 45(4):478–489. https://doi.org/10.1111/ejn.13478
Zhao X, Mohammed R, Tran H, Erickson M, Kentner AC (2021) Poly (I:C)-induced maternal immune activation modifies ventral hippocampal regulation of stress reactivity: prevention by environmental enrichment. Brain Behav Immun 95:203–215. https://doi.org/10.1016/j.bbi.2021.03.018
Kesner RP (2018) An analysis of dentate gyrus function (an update). Behav Brain Res 354:84–91. https://doi.org/10.1016/j.bbr.2017.07.033
Kheirbek MA, Drew LJ, Burghardt NS, Costantini DO, Tannenholz L, Ahmari SE, Zeng H, Fenton AA, Hen R (2013) Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron 77(5):955–968. https://doi.org/10.1016/j.neuron.2012.12.038
Weeden CS, Roberts JM, Kamm AM, Kesner RP (2015) The role of the ventral dentate gyrus in anxiety-based behaviors. Neurobiol Learn Mem 118:143–149. https://doi.org/10.1016/j.nlm.2014.12.002
Lipina TV, Zai C, Hlousek D, Roder JC, Wong AH (2013) Maternal immune activation during gestation interacts with Disc1 point mutation to exacerbate schizophrenia-related behaviors in mice. J neuroscience off j Soc Neuroscience 33(18):7654–7666. https://doi.org/10.1523/jneurosci.0091-13.2013
Pierre WC, Londono I, Quiniou C, Chemtob S, Lodygensky GA (2022) Modulatory effect of IL-1 inhibition following lipopolysaccharide-induced neuroinflammation in neonatal microglia and astrocytes. Int j dev neuroscience off j Int Soc Dev Neuroscience. https://doi.org/10.1002/jdn.10179
Glynn MW, Elmer BM, Garay PA, Liu XB, Needleman LA, El-Sabeawy F, McAllister AK (2011) MHCI negatively regulates synapse density during the establishment of cortical connections. Nat Neurosci 14(4):442–451. https://doi.org/10.1038/nn.2764
Labouesse MA, Dong E, Grayson DR, Guidotti A, Meyer U (2015) Maternal immune activation induces GAD1 and GAD2 promoter remodeling in the offspring prefrontal cortex. Epigenetics 10(12):1143–1155. https://doi.org/10.1080/15592294.2015.1114202
Lee H, Brott BK, Kirkby LA, Adelson JD, Cheng S, Feller MB, Datwani A, Shatz CJ (2014) Synapse elimination and learning rules co-regulated by MHC class I H2-Db. Nature 509(7499):195–200. https://doi.org/10.1038/nature13154
Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32(8):421–431. https://doi.org/10.1016/j.tins.2009.05.001
Tucsek Z, Noa Valcarcel-Ares M, Tarantini S, Yabluchanskiy A, Fülöp G, Gautam T, Orock A, Csiszar A, Deak F, Ungvari Z (2017) Hypertension-induced synapse loss and impairment in synaptic plasticity in the mouse hippocampus mimics the aging phenotype: implications for the pathogenesis of vascular cognitive impairment. GeroScience 39(4):385–406. https://doi.org/10.1007/s11357-017-9981-y
Rothermundt M, Ponath G, Glaser T, Hetzel G, Arolt V (2004) S100B serum levels and long-term improvement of negative symptoms in patients with schizophrenia. Neuropsychopharmacology : off publ Am Coll Neuropsychopharmacology 29(5):1004–1011. https://doi.org/10.1038/sj.npp.1300403
Rothermundt M, Falkai P, Ponath G, Abel S, Bürkle H, Diedrich M, Hetzel G, Peters M, Siegmund A, Pedersen A, Maier W, Schramm J, Suslow T, Ohrmann P, Arolt V (2004) Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol Psychiatry 9(10):897–899. https://doi.org/10.1038/sj.mp.4001548
Goeden N, Velasquez J, Arnold KA, Chan Y, Lund BT, Anderson GM, Bonnin A (2016) Maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain. J neuroscience the off j Soc Neuroscience 36(22):6041–6049. https://doi.org/10.1523/jneurosci.2534-15.2016
Bonnin A, Goeden N, Chen K, Wilson ML, King J, Shih JC, Blakely RD, Deneris ES, Levitt P (2011) A transient placental source of serotonin for the fetal forebrain. Nature 472(7343):347–350. https://doi.org/10.1038/nature09972
Goeden N, Bonnin A (2013) Ex vivo perfusion of mid-to-late-gestation mouse placenta for maternal-fetal interaction studies during pregnancy. Nat Protoc 8(1):66–74. https://doi.org/10.1038/nprot.2012.144
Kindler J, Lim CK, Weickert CS, Boerrigter D, Galletly C, Liu D, Jacobs KR, Balzan R, Bruggemann J, O’Donnell M, Lenroot R, Guillemin GJ, Weickert TW (2020) Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Mol Psychiatry 25(11):2860–2872. https://doi.org/10.1038/s41380-019-0401-9
Hardingham GE, Do KQ (2016) Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat Rev Neurosci 17(2):125–134. https://doi.org/10.1038/nrn.2015.19
Cohen SM, Tsien RW, Goff DC, Halassa MM (2015) The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophr Res 167(1–3):98–107. https://doi.org/10.1016/j.schres.2014.12.026
Hasam-Henderson LA, Gotti GC, Mishto M, Klisch C, Gerevich Z, Geiger JRP, Kovács R (2018) NMDA-receptor inhibition and oxidative stress during hippocampal maturation differentially alter parvalbumin expression and gamma-band activity. Sci Rep 8(1):9545. https://doi.org/10.1038/s41598-018-27830-2
Yeung RK, Xiang ZH, Tsang SY, Li R, Ho TYC, Li Q, Hui CK, Sham PC, Qiao MQ, Xue H (2018) Gabrb2-knockout mice displayed schizophrenia-like and comorbid phenotypes with interneuron-astrocyte-microglia dysregulation. Transl Psychiatry 8(1):128. https://doi.org/10.1038/s41398-018-0176-9
Miyazawa A, Kanahara N, Kogure M, Otsuka I, Okazaki S, Watanabe Y, Yamasaki F, Nakata Y, Oda Y, Hishimoto A, Iyo M (2022) A preliminary genetic association study of GAD1 and GABAB receptor genes in patients with treatment-resistant schizophrenia. Mol Biol Rep 49(3):2015–2024. https://doi.org/10.1007/s11033-021-07019-z
Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways (015. Nature neuroscience 18 (2):199–209. https://doi.org/10.1038/nn.3922
Tseng WC, Reinhart V, Lanz TA, Weber ML, Pang J, Le KXV, Bell RD, O’Donnell P, Buhl DL (2021) Schizophrenia-associated SLC39A8 polymorphism is a loss-of-function allele altering glutamate receptor and innate immune signaling. Transl Psychiatry 11(1):136. https://doi.org/10.1038/s41398-021-01262-5
Xiu MH, Tian L, Chen S, Tan YL, Chen DC, Chen J, Chen N, De Yang F, Licinio J, Kosten TR, Soares JC, Zhang XY (2016) Contribution of IL-10 and its -592 A/C polymorphism to cognitive functions in first-episode drug-naive schizophrenia. Brain Behav Immun 57:116–124. https://doi.org/10.1016/j.bbi.2016.03.005
Mata I, Crespo-Facorro B, Pérez-Iglesias R, Carrasco-Marín E, Arranz MJ, Pelayo-Terán JM, Leyva-Cobían F, Vázquez-Barquero JL (2006) Association between the interleukin1 receptor antagonist gene and negative symptom improvement during antipsychotic treatment. Am j med gen Part B Neuropsychiatric genetics off publ Int Soc Psychiatric Gen 141b(8):939–94. https://doi.org/10.1002/ajmg.b.30405
Lang UE, Puls I, Muller DJ, Strutz-Seebohm N, Gallinat J (2007) Molecular mechanisms of schizophrenia. Cell physiol biochem : int j exp cell physiol, biochem pharmacol 20(6):687–702. https://doi.org/10.1159/000110430
Schmitt A, Leonardi-Essmann F, Durrenberger PF, Parlapani E, Schneider-Axmann T, Spanagel R, Arzberger T, Kretzschmar H, Herrera-Marschitz M, Gruber O, Reynolds R, Falkai P, Gebicke-Haerter PJ (2011) Regulation of immune-modulatory genes in left superior temporal cortex of schizophrenia patients: a genome-wide microarray study. world j biol psychiatry off j World Fed Soci Biol Psychiatry 12(3):201–215. https://doi.org/10.3109/15622975.2010.530690
Calabrò M, Drago A, Sidoti A, Serretti A, Crisafulli C (2015) Genes involved in pruning and inflammation are enriched in a large mega-sample of patients affected by Schizophrenia and Bipolar Disorder and controls. Psychiatry Res 228(3):945–949. https://doi.org/10.1016/j.psychres.2015.06.013
Hwang Y, Kim J, Shin JY, Kim JI, Seo JS, Webster MJ, Lee D, Kim S (2013) Gene expression profiling by mRNA sequencing reveals increased expression of immune/inflammation-related genes in the hippocampus of individuals with schizophrenia. Transl Psychiatry 3(10):e321. https://doi.org/10.1038/tp.2013.94
Kadasah S, Arfin M, Rizvi S, Al-Asmari M, Al-Asmari A (2017) Tumor necrosis factor-α and -β genetic polymorphisms as a risk factor in Saudi patients with schizophrenia. Neuropsychiatr Dis Treat 13:1081–1088. https://doi.org/10.2147/ndt.S131144
Aytac HM, Ozdilli K, Tuncel FC, Pehlivan M, Pehlivan S (2022) Tumor necrosis factor-alpha (TNF-α) -238 G/A polymorphism is associated with the treatment resistance and attempted suicide in schizophrenia. Immunol Invest 51(2):368–380. https://doi.org/10.1080/08820139.2020.1832115
Garcia-Rosa S, Carvalho BS, Guest PC, Steiner J, Martins-de-Souza D (2020) Blood plasma proteomic modulation induced by olanzapine and risperidone in schizophrenia patients. J Proteomics 224:103813. https://doi.org/10.1016/j.jprot.2020.103813
Al-Amin MM, Nasir Uddin MM, Mahmud Reza H (2013) Effects of antipsychotics on the inflammatory response system of patients with schizophrenia in peripheral blood mononuclear cell cultures. Clin psychopharmacology neuroscience off sci j Korean Coll Neuropsychopharmacology 11(3):144–151. https://doi.org/10.9758/cpn.2013.11.3.144
Tourjman V, Kouassi É, Koué M, Rocchetti M, Fortin-Fournier S, Fusar-Poli P, Potvin S (2013) Antipsychotics’ effects on blood levels of cytokines in schizophrenia: a meta-analysis. Schizophr Res 151(1–3):43–47. https://doi.org/10.1016/j.schres.2013.10.011
Dierynck I, Bernard A, Roels H, De Ley M (1995) Potent inhibition of both human interferon-gamma production and biologic activity by the Clara cell protein CC16. Am J Respir Cell Mol Biol 12(2):205–210. https://doi.org/10.1165/ajrcmb.12.2.7865218
Maes M, Bocchio Chiavetto L, Bignotti S, Battisa Tura G, Pioli R, Boin F, Kenis G, Bosmans E, de Jongh R, Lin A, Racagni G, Altamura CA (2000) Effects of atypical antipsychotics on the inflammatory response system in schizophrenic patients resistant to treatment with typical neuroleptics. Eur neuropsychopharmacology j Eur Coll Neuropsychopharmacology 10(2):119–124. https://doi.org/10.1016/s0924-977x(99)00062-0
Steiner J, Frodl T, Schiltz K, Dobrowolny H, Jacobs R, Fernandes BS, Guest PC, Meyer-Lotz G, Borucki K, Bahn S, Bogerts B, Falkai P, Bernstein HG (2020) Innate immune cells and C-reactive protein in acute first-episode psychosis and schizophrenia: relationship to psychopathology and treatment. Schizophr Bull 46(2):363–373. https://doi.org/10.1093/schbul/sbz068
Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, Samara M, Barbui C, Engel RR, Geddes JR, Kissling W, Stapf MP, Lässig B, Salanti G, Davis JM (2013) Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet (London, England) 382(9896):951–962. https://doi.org/10.1016/s0140-6736(13)60733-3
Brinholi FF, Farias CC, Bonifácio KL, Higachi L, Casagrande R, Moreira EG, Barbosa DS (2016) Clozapine and olanzapine are better antioxidants than haloperidol quetiapine risperidone and ziprasidone in in vitro models. Biomed pharmacother Biomed pharmacotherapie 81:411–415
de Bartolomeis A, Barone A, Begni V, Riva MA (2022) Present and future antipsychotic drugs: a systematic review of the putative mechanisms of action for efficacy and a critical appraisal under a translational perspective. Pharmacol Res 176:106078. https://doi.org/10.1016/j.phrs.2022.106078
Song C, Lin A, Kenis G, Bosmans E, Maes M (2000) Immunosuppressive effects of clozapine and haloperidol: enhanced production of the interleukin-1 receptor antagonist. Schizophr Res 42(2):157–164. https://doi.org/10.1016/s0920-9964(99)00116-4
Paterson GJ, Ohashi Y, Reynolds GP, Pratt JA, Morris BJ (2006) Selective increases in the cytokine, TNFalpha, in the prefrontal cortex of PCP-treated rats and human schizophrenic subjects: influence of antipsychotic drugs. J psychopharmacol (Oxford, England) 20(5):636–642. https://doi.org/10.1177/0269881106062025
Gross A, Joffe G, Joutsiniemi SL, Nyberg P, Rimón R, Appelberg B (2003) Decreased production of reactive oxygen species by blood monocytes caused by clozapine correlates with EEG slowing in schizophrenic patients. Neuropsychobiology 47(2):73–77. https://doi.org/10.1159/000070012
Hu X, Zhou H, Zhang D, Yang S, Qian L, Wu HM, Chen PS, Wilson B, Gao HM, Lu RB, Hong JS (2012) Clozapine protects dopaminergic neurons from inflammation-induced damage by inhibiting microglial overactivation. J neuroimmune pharmacol off j Soc NeuroImmune Pharmacol 7(1):187–201. https://doi.org/10.1007/s11481-011-9309-0
Onwordi EC, Halff EF, Whitehurst T, Mansur A, Cotel MC, Wells L, Creeney H, Bonsall D, Rogdaki M, Shatalina E, Reis Marques T, Rabiner EA, Gunn RN, Natesan S, Vernon AC, Howes OD (2020) Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nat Commun 11(1):246. https://doi.org/10.1038/s41467-019-14122-0
Snow WM, Stoesz BM, Kelly DM, Albensi BC (2014) Roles for NF-κB and gene targets of NF-κB in synaptic plasticity, memory, and navigation. Mol Neurobiol 49(2):757–770. https://doi.org/10.1007/s12035-013-8555-y
Park JH, Park HJ, Lee SE, Kim YS, Jang GY, Han HD, Jung ID, Shin KC, Bae YM, Kang TH, Park YM (2019) Repositioning of the antipsychotic drug TFP for sepsis treatment. J Mol Med (Berl) 97(5):647–658. https://doi.org/10.1007/s00109-019-01762-4
Torres-Rosas R, Yehia G, Peña G, Mishra P, del Rocio T-B, Moreno-Eutimio MA, Arriaga-Pizano LA, Isibasi A, Ulloa L (2014) Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat Med 20(3):291–295. https://doi.org/10.1038/nm.3479
Yamamoto S, Ohta N, Matsumoto A, Horiguchi Y, Koide M, Fujino Y (2016) Haloperidol suppresses NF-kappaB to inhibit lipopolysaccharide-induced pro-inflammatory response in RAW 264 cells. Med sci monit int med j exp clin res 22:367–372. https://doi.org/10.12659/msm.895739
MacDowell KS, Caso JR, Martín-Hernández D, Madrigal JL, Leza JC, García-Bueno B (2014) Paliperidone prevents brain toll-like receptor 4 pathway activation and neuroinflammation in rat models of acute and chronic restraint stress. int j neuropsychopharmacol 18:3. https://doi.org/10.1093/ijnp/pyu070
Kumarasinghe N, Beveridge NJ, Gardiner E, Scott RJ, Yasawardene S, Perera A, Mendis J, Suriyakumara K, Schall U, Tooney PA (2013) Gene expression profiling in treatment-naive schizophrenia patients identifies abnormalities in biological pathways involving AKT1 that are corrected by antipsychotic medication. Int J Neuropsychopharmacol 16(7):1483–1503. https://doi.org/10.1017/s1461145713000035
Frydecka D, Krzystek-Korpacka M, Lubeiro A, Stramecki F, Stańczykiewicz B, Beszłej JA, Piotrowski P, Kotowicz K, Szewczuk-Bogusławska M, Pawlak-Adamska E, Misiak B (2018) Profiling inflammatory signatures of schizophrenia: a cross-sectional and meta-analysis study. Brain Behav Immun 71:28–36. https://doi.org/10.1016/j.bbi.2018.05.002
Fung SJ, Joshi D, Fillman SG, Weickert CS (2014) High white matter neuron density with elevated cortical cytokine expression in schizophrenia. Biol Psychiat 75(4):e5-7. https://doi.org/10.1016/j.biopsych.2013.05.031
Baker C, Belbin O, Kalsheker N, Morgan K (2007) SERPINA3 (aka alpha-1-antichymotrypsin). Front Biosci 12:2821–2835. https://doi.org/10.2741/2275
Martins-de-Souza D, Solari FA, Guest PC, Zahedi RP, Steiner J (2015) Biological pathways modulated by antipsychotics in the blood plasma of schizophrenia patients and their association to a clinical response. NPJ Schizophr 1:15050. https://doi.org/10.1038/npjschz.2015.50
Müller N, Ulmschneider M, Scheppach C, Schwarz MJ, Ackenheil M, Möller HJ, Gruber R, Riedel M (2004) COX-2 inhibition as a treatment approach in schizophrenia: immunological considerations and clinical effects of celecoxib add-on therapy. Eur Arch Psychiatry Clin Neurosci 254(1):14–22. https://doi.org/10.1007/s00406-004-0478-1
Laan W, Grobbee DE, Selten JP, Heijnen CJ, Kahn RS, Burger H (2010) Adjuvant aspirin therapy reduces symptoms of schizophrenia spectrum disorders: results from a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 71(5):520–527. https://doi.org/10.4088/JCP.09m05117yel
Sommer IE, van Westrhenen R, Begemann MJ, de Witte LD, Leucht S, Kahn RS (2014) Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: an update. Schizophr Bull 40(1):181–191. https://doi.org/10.1093/schbul/sbt139
Zacho J, Tybjaerg-Hansen A, Nordestgaard BG (2010) C-reactive protein and all-cause mortality–the Copenhagen City Heart Study. Eur Heart J 31(13):1624–1632. https://doi.org/10.1093/eurheartj/ehq103
Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286(3):327–334. https://doi.org/10.1001/jama.286.3.327
Horiguchi M, Hannaway KE, Adelekun AE, Huang M, Jayathilake K, Meltzer HY (2013) D(1) receptor agonists reverse the subchronic phencyclidine (PCP)-induced novel object recognition (NOR) deficit in female rats. Behav Brain Res 238:36–43. https://doi.org/10.1016/j.bbr.2012.09.030
Wesseling H, Rahmoune H, Tricklebank M, Guest PC, Bahn S (2015) A targeted multiplexed proteomic investigation identifies ketamine-induced changes in immune markers in rat serum and expression changes in protein kinases/phosphatases in rat brain. J Proteome Res 14(1):411–421. https://doi.org/10.1021/pr5009493
Zhao L, Li Y, Xu T, Lv Q, Bi X, Liu X, Fu G, Zou Y, Ge J, Chen Z, Zhang W (2022) Dendritic cell-mediated chronic low-grade inflammation is regulated by the RAGE-TLR4-PKCβ(1) signaling pathway in diabetic atherosclerosis. Mol med (Cambridge, Mass) 28(1):4. https://doi.org/10.1186/s10020-022-00431-6
Arnsten AF (2009) Ameliorating prefrontal cortical dysfunction in mental illness: inhibition of phosphotidyl inositol-protein kinase C signaling. Psychopharmacol 202(1–3):445–455. https://doi.org/10.1007/s00213-008-1274-9
Silver H, Feldman P, Bilker W, Gur RC (2003) Working memory deficit as a core neuropsychological dysfunction in schizophrenia. Am J Psychiatry 160(10):1809–1816. https://doi.org/10.1176/appi.ajp.160.10.1809
Chen R, Daining CP, Sun H, Fraser R, Stokes SL, Leitges M, Gnegy ME (2013) Protein kinase Cβ is a modulator of the dopamine D2 autoreceptor-activated trafficking of the dopamine transporter. J Neurochem 125(5):663–672. https://doi.org/10.1111/jnc.12229
Rimessi A, Pavan C, Ioannidi E, Nigro F, Morganti C, Brugnoli A, Longo F, Gardin C, Ferroni L, Morari M, Vindigni V, Zavan B, Pinton P (2017) Protein kinase C β: a new target therapy to prevent the long-term atypical antipsychotic-induced weight gain. Neuropsychopharmacology off publ Am Coll Neuropsychopharmacol 42(7):1491–1501. https://doi.org/10.1038/npp.2017.20
Silver H, Susser E, Danovich L, Bilker W, Youdim M, Goldin V, Weinreb O (2011) SSRI augmentation of antipsychotic alters expression of GABA(A) receptor and related genes in PMC of schizophrenia patients. Int J Neuropsychopharmacol 14(5):573–584. https://doi.org/10.1017/s1461145710001471
Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M (1999) Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry 56(1):29–36. https://doi.org/10.1001/archpsyc.56.1.29
Pollmächer T, Hinze-Selch D, Mullington J (1996) Effects of clozapine on plasma cytokine and soluble cytokine receptor levels. J Clin Psychopharmacol 16(5):403–409. https://doi.org/10.1097/00004714-199610000-00011
Ribeiro BM, do Carmo MR, Freire RS, Rocha NF, Borella VC, de Menezes AT, Monte AS, Gomes PX, de Sousa FC, Vale ML, de Lucena DF, Gama CS, Macêdo D 2013 Evidences for a progressive microglial activation and increase in iNOS expression in rats submitted to a neurodevelopmental model of schizophrenia: reversal by clozapine. Schizophrenia research 151 1-3 12-19 https://doi.org/10.1016/j.schres.2013.10.040
Lundberg M, Curbo S, Bohman H, Agartz I, Ögren SO, Patrone C, Mansouri S 2020 Clozapine protects adult neural stem cells from ketamine-induced cell death in correlation with decreased apoptosis and autophagy. Bioscience reports 40 (1). 10.1042/bsr20193156
You MJ, Bang M, Park HS, Yang B, Jang KB, Yoo J, Hwang DY, Kim M, Kim B, Lee SH, Kwon MS (2020) Human umbilical cord-derived mesenchymal stem cells alleviate schizophrenia-relevant behaviors in amphetamine-sensitized mice by inhibiting neuroinflammation. Transl Psychiatry 10(1):123. https://doi.org/10.1038/s41398-020-0802-1
Müller N, Riedel M, Scheppach C, Brandstätter B, Sokullu S, Krampe K, Ulmschneider M, Engel RR, Möller HJ, Schwarz MJ (2002) Beneficial antipsychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. Am J Psychiatry 159(6):1029–1034. https://doi.org/10.1176/appi.ajp.159.6.1029
Müller N, Riedel M, Schwarz MJ, Engel RR (2005) Clinical effects of COX-2 inhibitors on cognition in schizophrenia. Eur Arch Psychiatry Clin Neurosci 255(2):149–151. https://doi.org/10.1007/s00406-004-0548-4
Rapaport MH, Delrahim KK, Bresee CJ, Maddux RE, Ahmadpour O, Dolnak D (2005) Celecoxib augmentation of continuously ill patients with schizophrenia. Biol Psychiat 57(12):1594–1596. https://doi.org/10.1016/j.biopsych.2005.02.024
Müller N 2010 COX-2 inhibitors as antidepressants and antipsychotics: clinical evidence. Current opinion in investigational drugs (London, England : 2000) 11 (1):31–42
Müller N, Krause D, Dehning S, Musil R, Schennach-Wolff R, Obermeier M, Möller HJ, Klauss V, Schwarz MJ, Riedel M (2010) Celecoxib treatment in an early stage of schizophrenia: results of a randomized, double-blind, placebo-controlled trial of celecoxib augmentation of amisulpride treatment. Schizophr Res 121(1–3):118–124. https://doi.org/10.1016/j.schres.2010.04.015
Schwieler L, Erhardt S, Erhardt C, Engberg G 2005 Prostaglandin-mediated control of rat brain kynurenic acid synthesis--opposite actions by COX-1 and COX-2 isoforms. Journal of neural transmission (Vienna, Austria : 1996) 112 (7):863–872. https://doi.org/10.1007/s00702-004-0231-y
Litherland SA, Xie XT, Hutson AD, Wasserfall C, Whittaker DS, She JX, Hofig A, Dennis MA, Fuller K, Cook R, Schatz D, Moldawer LL, Clare-Salzler MJ (1999) Aberrant prostaglandin synthase 2 expression defines an antigen-presenting cell defect for insulin-dependent diabetes mellitus. J Clin Investig 104(4):515–523. https://doi.org/10.1172/jci4852
Levkovitz Y, Mendlovich S, Riwkes S, Braw Y, Levkovitch-Verbin H, Gal G, Fennig S, Treves I, Kron S (2010) A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. J Clin Psychiatry 71(2):138–149. https://doi.org/10.4088/JCP.08m04666yel
Çakici N, van Beveren NJM, Judge-Hundal G, Koola MM, Sommer IEC (2019) An update on the efficacy of anti-inflammatory agents for patients with schizophrenia: a meta-analysis. Psychol Med 49(14):2307–2319. https://doi.org/10.1017/s0033291719001995
Nitta M, Kishimoto T, Müller N, Weiser M, Davidson M, Kane JM, Correll CU (2013) Adjunctive use of nonsteroidal anti-inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr Bull 39(6):1230–1241. https://doi.org/10.1093/schbul/sbt070
Tynan RJ, Weidenhofer J, Hinwood M, Cairns MJ, Day TA, Walker FR (2012) A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain Behav Immun 26(3):469–479. https://doi.org/10.1016/j.bbi.2011.12.011
Xie N, Wang C, Lin Y, Li H, Chen L, Zhang T, Sun Y, Zhang Y, Yin D, Chi Z (2010) The role of p38 MAPK in valproic acid induced microglia apoptosis. Neurosci Lett 482(1):51–56. https://doi.org/10.1016/j.neulet.2010.07.004
Inglese M, Petracca M (2015) Therapeutic strategies in multiple sclerosis: a focus on neuroprotection and repair and relevance to schizophrenia. Schizophr Res 161(1):94–101. https://doi.org/10.1016/j.schres.2014.04.040
Meyer U, Schwarz MJ, Müller N (2011) Inflammatory processes in schizophrenia: a promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond. Pharmacol Ther 132(1):96–110. https://doi.org/10.1016/j.pharmthera.2011.06.003
Wang B, Navath RS, Romero R, Kannan S, Kannan R (2009) Anti-inflammatory and anti-oxidant activity of anionic dendrimer-N-acetyl cysteine conjugates in activated microglial cells. Int J Pharm 377(1–2):159–168. https://doi.org/10.1016/j.ijpharm.2009.04.050
Paul BD, Snyder SH (2019) Therapeutic applications of cysteamine and cystamine in neurodegenerative and neuropsychiatric diseases. Front Neurol 10:1315. https://doi.org/10.3389/fneur.2019.01315
Chaves C, Marque CR, Maia-de-Oliveira JP, Wichert-Ana L, Ferrari TB, Santos AC, Araújo D, Machado-de-Sousa JP, Bressan RA, Elkis H, Crippa JA, Guimarães FS, Zuardi AW, Baker GB, Dursun SM, Hallak JE (2015) Effects of minocycline add-on treatment on brain morphometry and cerebral perfusion in recent-onset schizophrenia. Schizophr Res 161(2–3):439–445. https://doi.org/10.1016/j.schres.2014.11.031
Mizoguchi H, Takuma K, Fukakusa A, Ito Y, Nakatani A, Ibi D, Kim HC, Yamada K (2008) Improvement by minocycline of methamphetamine-induced impairment of recognition memory in mice. Psychopharmacology 196(2):233–241. https://doi.org/10.1007/s00213-007-0955-0
Chaudhry IB, Hallak J, Husain N, Minhas F, Stirling J, Richardson P, Dursun S, Dunn G, Deakin B (2012) Minocycline benefits negative symptoms in early schizophrenia: a randomised double-blind placebo-controlled clinical trial in patients on standard treatment. J psychopharmacol (Oxford, England) 26(9):1185–1193. https://doi.org/10.1177/0269881112444941
Buonaguro EF, Tomasetti C, Chiodini P, Marmo F, Latte G, Rossi R, Avvisati L, Iasevoli F, de Bartolomeis A (2017) Postsynaptic density protein transcripts are differentially modulated by minocycline alone or in add-on to haloperidol: implications for treatment resistant schizophrenia. J psychopharmacol (Oxford, England) 31(4):406–417. https://doi.org/10.1177/0269881116658987
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC (2018) Neuronal Cell Death. Physiol Rev 98(2):813–880. https://doi.org/10.1152/physrev.00011.2017
Monji A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M, Yamauchi Y, Yamada S, Kanba S (2013) Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuropsychopharmacol Biol Psychiatry 42:115–121. https://doi.org/10.1016/j.pnpbp.2011.12.002
Girgis RR, Kumar SS, Brown AS (2014) The cytokine model of schizophrenia: emerging therapeutic strategies. Biol Psychiat 75(4):292–299. https://doi.org/10.1016/j.biopsych.2013.12.002
Hu H, Gan J, Jonas P (2014) Interneurons Fast-spiking parvalbumin GABAergic interneurons from cellular design to microcircuit function. Science New York, NY 345(6196):1255263. https://doi.org/10.1126/science.1255263
Kim H, Ährlund-Richter S, Wang X, Deisseroth K, Carlén M (2016) Prefrontal Parvalbumin Neurons in Control of Attention. Cell 164(1–2):208–218. https://doi.org/10.1016/j.cell.2015.11.038
Perez SM, Boley A, Lodge DJ (2019) Region specific knockdown of Parvalbumin or Somatostatin produces neuronal and behavioral deficits consistent with those observed in schizophrenia. Transl Psychiatry 9(1):264. https://doi.org/10.1038/s41398-019-0603-6
Grent-'t-Jong T, Gross J, Goense J, Wibral M, Gajwani R, Gumley AI, Lawrie SM, Schwannauer M, Schultze-Lutter F, Navarro Schröder T, Koethe D, Leweke FM, Singer W, Uhlhaas PJ 2018 Resting-state gamma-band power alterations in schizophrenia reveal E/I-balance abnormalities across illness-stages. eLife 7. https://doi.org/10.7554/eLife.37799
Cabungcal JH, Steullet P, Kraftsik R, Cuenod M, Do KQ (2013) Early-life insults impair parvalbumin interneurons via oxidative stress: reversal by N-acetylcysteine. Biol Psychiat 73(6):574–582. https://doi.org/10.1016/j.biopsych.2012.09.020
Soares AR, Gildawie KR, Honeycutt JA, Brenhouse HC (2020) Region-specific effects of maternal separation on oxidative stress accumulation in parvalbumin neurons of male and female rats. Behav Brain Res 388:112658. https://doi.org/10.1016/j.bbr.2020.112658
Mukherjee A, Carvalho F, Eliez S, Caroni P (2019) Long-lasting rescue of network and cognitive dysfunction in a genetic schizophrenia model. Cell 178(6):1387-1402.e1314. https://doi.org/10.1016/j.cell.2019.07.023
Steullet P, Cabungcal JH, Coyle J, Didriksen M, Gill K, Grace AA, Hensch TK, LaMantia AS, Lindemann L, Maynard TM, Meyer U, Morishita H, O’Donnell P, Puhl M, Cuenod M, Do KQ (2017) Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol Psychiatry 22(7):936–943. https://doi.org/10.1038/mp.2017.47
Dwir D, Giangreco B, Xin L, Tenenbaum L, Cabungcal JH, Steullet P, Goupil A, Cleusix M, Jenni R, Chtarto A, Baumann PS, Klauser P, Conus P, Tirouvanziam R, Cuenod M, Do KQ (2020) MMP9/RAGE pathway overactivation mediates redox dysregulation and neuroinflammation, leading to inhibitory/excitatory imbalance: a reverse translation study in schizophrenia patients. Mol Psychiatry 25(11):2889–2904. https://doi.org/10.1038/s41380-019-0393-5
Dwir D, Cabungcal JH, Xin L, Giangreco B, Parietti E, Cleusix M, Jenni R, Klauser P, Conus P, Cuénod M, Steullet P, Do KQ (2021) Timely N-acetyl-cysteine and environmental enrichment rescue oxidative stress-induced parvalbumin interneuron impairments via MMP9/RAGE pathway: a translational approach for early intervention in psychosis. Schizophr Bull 47(6):1782–1794. https://doi.org/10.1093/schbul/sbab066
Millan MJ, Andrieux A, Bartzokis G, Cadenhead K, Dazzan P, Fusar-Poli P, Gallinat J, Giedd J, Grayson DR, Heinrichs M, Kahn R, Krebs MO, Leboyer M, Lewis D, Marin O, Marin P, Meyer-Lindenberg A, McGorry P, McGuire P, Owen MJ, Patterson P, Sawa A, Spedding M, Uhlhaas P, Vaccarino F, Wahlestedt C, Weinberger D (2016) Altering the course of schizophrenia: progress and perspectives. Nat Rev Drug Discovery 15(7):485–515. https://doi.org/10.1038/nrd.2016.28
Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14(3):285–293. https://doi.org/10.1038/nn.2741
Bennett MR (2011) Schizophrenia: susceptibility genes, dendritic-spine pathology and gray matter loss. Prog Neurobiol 95(3):275–300. https://doi.org/10.1016/j.pneurobio.2011.08.003
Ertürk A, Wang Y, Sheng M (2014) Local pruning of dendrites and spines by caspase-3-dependent and proteasome-limited mechanisms. J neuroscience off j Soc Neuroscience 34(5):1672–1688. https://doi.org/10.1523/jneurosci.3121-13.2014
Critchlow HM, Maycox PR, Skepper JN, Krylova O (2006) Clozapine and haloperidol differentially regulate dendritic spine formation and synaptogenesis in rat hippocampal neurons. Mol Cell Neurosci 32(4):356–365. https://doi.org/10.1016/j.mcn.2006.05.007
Trépanier MO, Hopperton KE, Mizrahi R, Mechawar N, Bazinet RP (2016) Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Mol Psychiatry 21(8):1009–1026. https://doi.org/10.1038/mp.2016.90
Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, Tooley K, Presumey J, Baum M, Van Doren V, Genovese G, Rose SA, Handsaker RE, Daly MJ, Carroll MC, Stevens B, McCarroll SA (2016) Schizophrenia risk from complex variation of complement component 4. Nature 530(7589):177–183. https://doi.org/10.1038/nature16549
Consortium SWGotPG (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43(10):969–976. https://doi.org/10.1038/ng.940
Müller N, Riedel M, Schwarz MJ (2004) Psychotropic effects of COX-2 inhibitors–a possible new approach for the treatment of psychiatric disorders. Pharmacopsychiatry 37(6):266–269. https://doi.org/10.1055/s-2004-83268