MATES FINAL STUDY GUIDE
June 7, 2021•481 words
Table of Contents
TRIGONOMETRIA
- p.433 del libro ## Shapes We know the following volumes and surface areas:
- Volume of a cuboid: $$V_c = lwh$$
- Volume of right rectangular pyramid: $$Vp = \frac{lwh}{3} = \frac{1}{3}A{Base}h$$
- Area of circle: $$V_c = \pi r2$$
- Volume of cylinder: $$V_c = \pi r2h$$
- Volume of cone: $$Vc = \frac{1}{3}\pi r2h = \frac{1}{3}A{Base}h$$
- Surface Area of a Pyramid: $$Sp=A{Base}+nA_{triangle}$$, where n is the number of sides of the regular polygon that makes up the base
- Surface Area of a Cone: $$S_{c}=\pi r2+\pi rs$$, where r is the radius and s is the slant height
- Surface area of a sphere: $$S_{s}=4\pi r2$$
- Volume of a sphere: $$V_{s}=\frac{4}{3}\pi r3$$ ## Trigonometric Geometry In right-angle trigonometry the mnemonic SOHCAHTOA is true
$$\sin\theta = \frac{\text{opposite side}}{\text{hypotenuse}}$$
$$\cos\theta = \frac{\text{adjacent side}}{\text{hypotenuse}}$$
$$\tan\theta = \frac{\text{opposite side}}{\text{adjacent side}}$$
Also, we know the following:Pythagorean Theorem: $$a2+b2=c2$$
$$360˚ = 2\pi \text{ rad}$$
$$s=r\theta$$, where $$s$$ is the length of an arc, $$r$$ is the radius, and $$\theta$$ is the angle from the center
The area of a sector: $$A_{s}=\frac{1}{2}r2\theta$$, where $$\theta$$ is the angle from the center of the circle measured in radians
Trigonometric Identities
Law of Cosines: $$c2=a2+b2-2ab\cos C$$
Law of Sines: $$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$$
Algebraic definition of tangent: $$\tan x =\frac{\sin x}{\cos x}$$
Definition of reciprocal trigonometric functions:
- $$\sec\theta =\frac{1}{\cos\theta}$$
- $$\cosec\theta =\frac{1}{\sin\theta}$$
- $$\cot\theta =\frac{1}{\tan\theta}$$
The main identities
- $$\sin2\theta+\cos2\theta=1$$
- $$1+\tan2\theta=\sec2\theta$$
- $$1+\cot2 \theta = \cosec2 \theta$$
Compound Angle Identities
- $$\sin(A\pm B)=\sin A\cos B \pm\sin B \cos A$$
- $$\cos(A\pm B)=\cos A\cos B \mp\sin A \sin B$$
- $$\tan(A\pm B)=\frac{\tan A \pm \tan B}{1 \pm \tan A \tan B}$$
Double Angle Identities
- $$\sin 2\theta=2\sin\theta\cos\theta$$
- $$\cos 2\theta=\cos2\theta-\sin2\theta=2\cos2\theta-1=1-2\sin2\theta$$
- $$\tan 2\theta = \frac{2\tan\theta}{1-\tan2\theta}$$
Some Trigonometric Transformations
- $$\sin(\pi-\theta)=\sin\theta$$
- $$\cos(\pi-\theta)=-\cos\theta$$
- $$\tan(\pi-\theta)=-\tan\theta$$
- $$\sin(\pi+\theta)=-\sin\theta$$
- $$\cos(\pi+\theta)=\cos\theta$$
- $$\tan(\pi+\theta)=\tan\theta$$
- $$\sin(2\pi-\theta)=-\sin\theta$$
- $$\cos(2\pi-\theta)=\cos\theta$$
- $$\tan(2\pi-\theta)=-\tan\theta$$ Unit Circle
- $$\sin\theta = \text{y-coordinate}$$
- $$\cos\theta = \text{x-coordinate}$$ ## Derivatives of Trigonometric Functions Basic trigonometric derivatives
- $$f(x)=\sin x \rightarrow f'(x)=\cos x $$
- $$f(x)=\cos x \rightarrow f'(x)=-\sin x $$
- $$f(x)=\tan x \rightarrow f'(x)=\sec2 x $$ Derivatives of inverse trigonometric derivatives
- $$f(x)=\arcsin x \rightarrow f'(x) = \frac{1}{\sqrt{1-x2}}$$
- $$f(x)=\arccos x \rightarrow f'(x) = -\frac{1}{\sqrt{1-x2}}$$
- $$f(x)=\arctan x \rightarrow f'(x) = \frac{1}{1+x2}$$ Derivatives of reciprocal trigonometric functions
- $$f(x)=\sec x \rightarrow f'(x)=\sec x \tan x $$
- $$f(x)=\csc x \rightarrow f'(x)=-\csc x \cot x $$
- $$f(x)=\cot x \rightarrow f'(x)=-\csc2 x $$ ## Graphs of Trigonometric Functions Let $$f(x)=a\sin[b(x+c)]+d$$. To calculate the amplitude use: $$a=\frac{\text{maximum value}-\text{minimum value}}{2}$$ To calculate the vertical shift use: $$d=\frac{\text{maximum value}+\text{minimum value}}{2}$$ ## Tangents and Normals For a curve $$f(x)$$, at a specified point $$(x1, y1)$$:
- Equation of the tangent: $$y=f'(x1)(x-x1)+y_1$$
- Equation of the tangent: $$y=\frac{-1}{f'(x1)}(x-x1)+y_1$$