Die Macher des legendären „Duke Nukem 3D“ legen 23 Jahre später mit „Ion Fury“ eine furiose Portion Nostalgie nach - leider mit Altlasten.
Auf Facebook teilen Auf Twitter teilen
Von Rainer Sigl
Die Neunzigerjahre sind längst wieder da, zumindest in Sachen First-Person-Shooter. In den letzten Monaten hat sich eine ganze Reihe famoser Indie-Titel der knallharten, geradlinigen Shooter-Vergangenheit wieder angenommen.
Jetzt steht aber statt lauwarmer Erinnerungskost sozusagen ein Original wieder ...
Sets
Symmetric Difference
Task
Given sets of integers, and , print their symmetric difference in ascending order. The term symmetric difference indicates those values that exist in either or but do not exist in both.
Input Format
The first line of input contains an integer, .
The second line contains space-separated integers.
The third line contains an integer, .
The fourth line contains space-separated integers.
Output Format
Output the symmetric difference integers in ascending...
itertools.permutations()
itertools.permutations(iterable[, r])
This tool returns successive length permutations of elements in an iterable. If is not specified or is None, then defaults to the length of the iterable, and all possible full length permutations are generated. Permutations are printed in a lexicographic sorted order. So, if the input iterable is sorted, the permutation tuples will be produced in a sorted order.
My solution
from itertools import permutations
inp = input().spli...
cmath
cmath.phase
This tool returns the phase of complex number z (also known as the argument of z).
>>>phase(complex(-1.0, 0.0))
3.1415926535897931
## cmath.abs
This tool returns the modulus (absolute value) of complex number z.
You are given a complex . Your task is to convert it to polar coordinates.
My solution
Adapted solution
code
cmath.polar()
Task
You are given a complex number z . Your task is to convert it to polar coordinates.
Input Format
A single line containi...
C3-4: Pandas
L1: Anaconda
L2: Jupyter Notebooks
L3: NumPy
L4: Pandas
Creating Pandas Series
import pandas as pd | Import Pandas
my_series = pd.Series(data = ['data1', 'data2', data3', 'data4'], index = ['row1', 'row2', 'row3', 'row4']) | Creates Series
my_series # Display Series
my_series.shape # Show shape as tuple
my_series.ndim # Dimensions as int
my_series.size # Number of elements
my_series.index # Show index
my_seriex.values # Show values
x = banana...
L5: Matplotlib and Seaborn Part 1
Bar Charts
\
Imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
%matplotlib inline
\
Read in CSV file
df = pd.read_csv('pokemon.csv')
print(df.shape)
pokemon.head(10)
\
Draw bar chart
sb.countplot(data = df, x = 'cat_var');
\
Change bar color to blue
base_color = sb.color_palette()[0]
sb.countplot(data = df, x = 'cat_var', color = base_color)
\
Change bar order (nominal-type data)
cat_order = df['cat_var'...